Resummation, Evolution, Factorization

8-11 December 2014 University of Antwerp

Perturbative QCD, CSS/TMD resummation and non-perturbative aspects in SIDIS processes

Mariaelena Boglione

In collaboration with J.O. Gonzalez Hernandez, S. Melis and A. Prokudin

UNIVERSITÀ DEGLI STUDI DI TORINO ALMA UNIVERSITAS TAURINENSIS

Outline

Resummation in SIDIS

The resummed W-termThe regular Y-term

Matching prescriptions

- Non-perturbative contributions to the Sudakov factor
- Dependence of the total cross section on the b_{max} parameter
- Y-term matching
- Matching with the inclusion of non-perturbative contributions

Conclusions and outlook

Practical implementations for 3 kinematical configurations

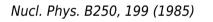
high energy and large Q²
 HERA-like
 COMPASS-like

Resummation of large logarithms

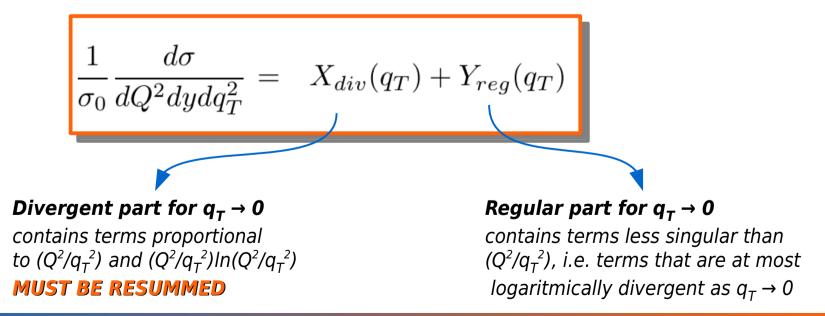
- ✓ Calculating a cross section which describes a hadronic process over the whole q_{τ} range is a highly non-trivial task
- ✓ It requires a proper treatment of the non-perturbative regime and the resummation of large logarithms, in the limit q_T << Q, arising from emission of soft and collinear gluons

Collins - Soper - Sterman (CSS) resummation (

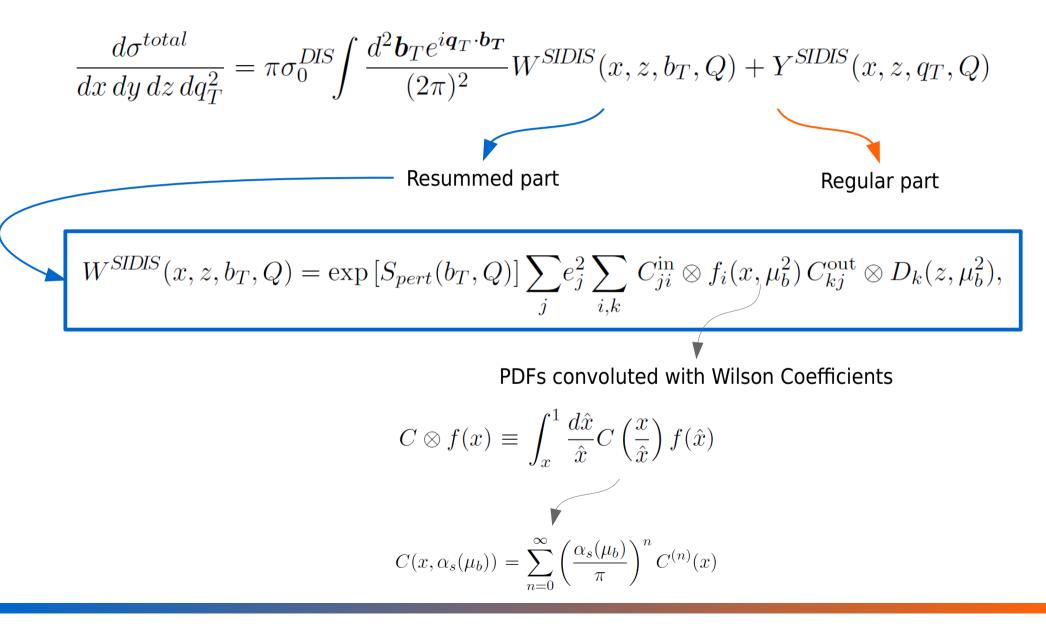
(⇒ TMD formalism)



Phys. Rev. D83, 114042 (2011)



CSS in SIDIS

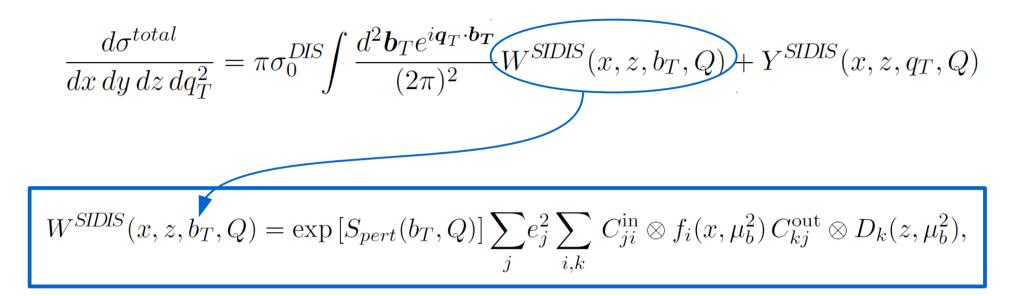


CSS in SIDIS

$$\frac{d\sigma^{total}}{dx \, dy \, dz \, dq_T^2} = \pi \sigma_0^{DIS} \int \frac{d^2 \mathbf{b}_T e^{i\mathbf{q}_T \cdot \mathbf{b}_T}}{(2\pi)^2} W^{SIDIS}(x, z, b_T, Q) + Y^{SIDIS}(x, z, q_T, Q)$$
Resummed part
Regular part
$$W^{SIDIS}(x, z, b_T, Q) = \exp\left[S_{pert}(b_T, Q)\right] \sum_j e_j^2 \sum_{i,k} C_{ji}^{\text{in}} \otimes f_i(x, \mu_b^2) C_{kj}^{\text{out}} \otimes D_k(z, \mu_b^2),$$
Sudakov factor
$$S_{pert}(b_T, Q) = -\int_{\mu_b^2}^{Q^2} \frac{d\mu^2}{\mu^2} \left[A(\alpha_s(\mu)) \ln\left(\frac{Q^2}{\mu^2}\right) + B(\alpha_s(\mu))\right]$$

$$A(\alpha_s(\mu)) = \sum_{n=1}^{\infty} \left(\frac{\alpha_s}{\pi}\right)^n A^{(n)}$$
Leading Log (LL) : $A^{(1)}$;
Next to LL (NLL) : $A^{(2)}, B^{(1)}, C^{(1)}$;
$$B(\alpha_s(\mu)) = \sum_{n=1}^{\infty} \left(\frac{\alpha_s}{\pi}\right)^n B^{(n)}$$
Next or NLL (NNLL) : $A^{(3)}, B^{(2)}, C^{(2)}$;
Fixed order $\alpha_s(FXO)$: $A^{(1)}, B^{(1)}, C^{(1)}$;

CSS in SIDIS



The resummed cross section, W, does not describe the whole q_τ range. It sums all known logarithmic terms dominating the low q_τ region, but does not take into account the full fixed order (NLO) corrections, which are important at large q_τ values.

- Because of the oscillatory nature of the Fourier integrand, W may become negative (i.e. unphysical) at large q₁
- For a consistent description over the whole q_⊤range we need to MATCH the resummed cross section with the NLO (fixed order) cross section

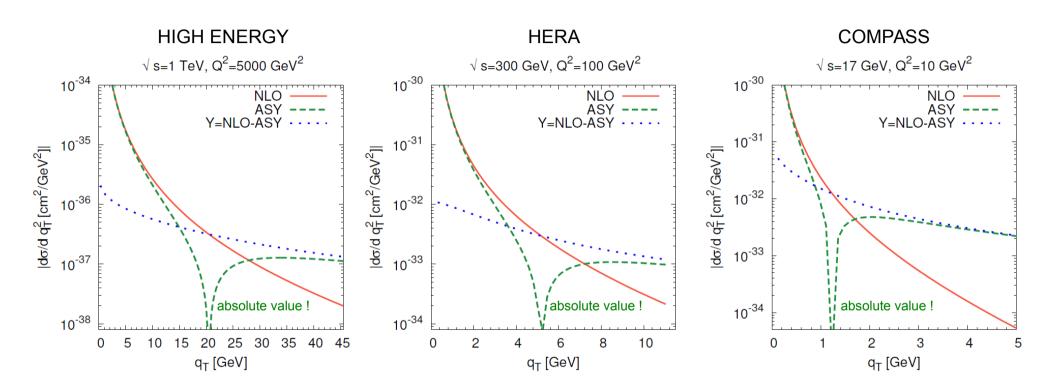
Warning: here NLO means first order in α_s of the collinear QCD cross section

The Y factor and the asymptotic part

$$\begin{split} \frac{d\sigma}{dxdzdQ^{2}d^{2}q_{T}} &= \sigma_{0}^{SIDIS} \Biggl\{ \int \frac{d^{2}\boldsymbol{b}_{T}e^{i\boldsymbol{q}_{T}\cdot\boldsymbol{b}_{T}}}{(2\pi)^{2}} \sum_{j} e_{j}^{2}W_{j}^{SIDIS}(x,z,b_{T},Q) + Y^{SIDIS} \Biggr\} \\ \frac{d\sigma^{NLO}}{dx\,dy\,dz\,dq_{T}^{2}} &= \frac{d\sigma^{ASY}}{dx\,dy\,dz\,dq_{T}^{2}} + Y \\ \end{split}$$

$$\begin{split} \text{Warning: here NLO means first order in $\boldsymbol{\alpha}_{s}$ of the collinear QCD cross section $\begin{split} \mathbf{Y} &= \mathbf{NLO} - \mathbf{ASY} \\ \frac{d^{5}\sigma^{\text{asymp}}}{dQ^{2}dx_{bj}\,dz_{f}\,dq_{T}^{2}\,d\phi} \\ &= \frac{\alpha_{cm}^{2}\alpha_{x}}{8\pi x_{bj}^{2}s_{F}^{2}Q^{2}} \mathcal{A}_{1}\frac{2Q^{2}}{q_{T}^{2}} \sum_{q,\bar{q}} e_{q}^{2} \Biggl[2f_{q}(x_{bj},\mu)D_{q}(z_{f},\mu) \Bigl(C_{F}\ln\left(\frac{Q^{2}}{q_{T}^{2}}\right) - \frac{3}{2}C_{F} \Bigr) \\ &+ \Bigl\{f_{q}(x_{bj},\mu) \otimes P_{qq}^{\text{in}(0)} + f_{g}(x_{bj},\mu) \otimes P_{qg}^{\text{in}(0)} \Bigr\} D_{q}(z_{f},\mu) \\ &+ f_{q}(x_{bj},\mu) \Bigl\{P_{qq}^{\text{out}(0)} \otimes D_{q}(z_{f},\mu) + P_{\text{out}(0)}^{\text{out}(0)} \otimes D_{g}(z_{f},\mu) \Bigr\} \Biggr]. \end{split}$$$

The Y factor and the asymptotic part



As ASY becomes negative (i.e. unphysical) at large q_{τ} , Y = NLO - ASY can become much larger than NLO

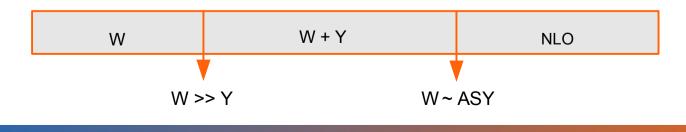
WARNING: the Y-term does not tend to zero at small q_{τ} , where ASY and NLO seem to be very close , as Y still contains terms ~ log(1/q_{\tau}), which become large at small q_{τ} .

Matching with the Y-factor

$$\frac{d\sigma}{dxdzdQ^2d^2q_T} = \sigma_0^{SIDIS} \left\{ \int \frac{d^2 \mathbf{b}_T e^{i\mathbf{q}_T \cdot \mathbf{b}_T}}{(2\pi)^2} \sum_j e_j^2 W_j^{SIDIS}(x, z, b_T, Q) + Y^{SIDIS} \right\}$$

$$\mathbf{Y} = \mathbf{NLO} - \mathbf{ASY}$$
At small \mathbf{q}_{τ} , if $W \gg Y$ then
 $\mathbf{W} + \mathbf{Y} \rightarrow \mathbf{W}$
At $\mathbf{q}_{\tau} \sim \mathbf{Q}$, if $W \rightarrow \mathbf{ASY}$ then
 $\mathbf{W} + \mathbf{Y} \rightarrow \mathbf{W}$

This prescription provides a smooth matching only when W \rightarrow ASY over a sufficiently large $q_{_{\rm T}}$ region



Does a kinematical range in which W ~ ASY exist ?

 Before we can answer this question we should worry about the non-perturbative contributions to the Sudakov factor

Non perturbative contributions

$$\frac{d\sigma^{total}}{dx\,dy\,dz\,dq_T^2} = \pi\sigma_0^{DIS} \int_0^\infty \frac{db_T b_T}{(2\pi)} J_0(q_T b_T) W^{SIDIS}(x, z, b_*, Q) \exp\left[S_{NP}(x, z, b_T, Q)\right] + Y(x, z, q_T, Q),$$

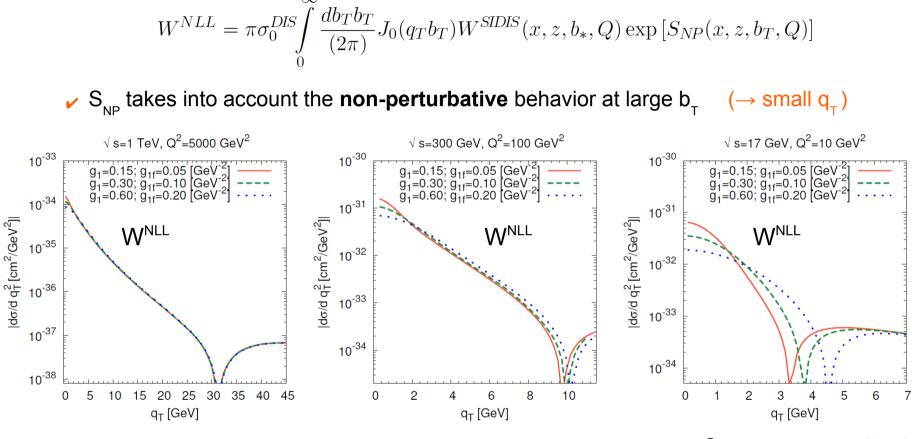
✓ W, the perturbative part of the Sudakov factor, is a function of b*

$$b_* = \frac{b_T}{\sqrt{1 + b_T^2/b_{max}^2}} \qquad \mu_b = C_1/b_*$$

- ✓ S_{NP} , the non-perturbative part of the Sudakov factor, accounts for the **non-perturbative** behavior at large b_T (i.e. small q_T)
- \checkmark Just for illustration, let's consider a simple (Gaussian) model for S_{NP}

$$S_{NP} = \left(-\frac{g_1}{2} - \frac{g_{1f}}{2z^2} - g_2 \ln\left(\frac{Q}{Q_0}\right)\right) b_T^2$$

Non perturbative contributions

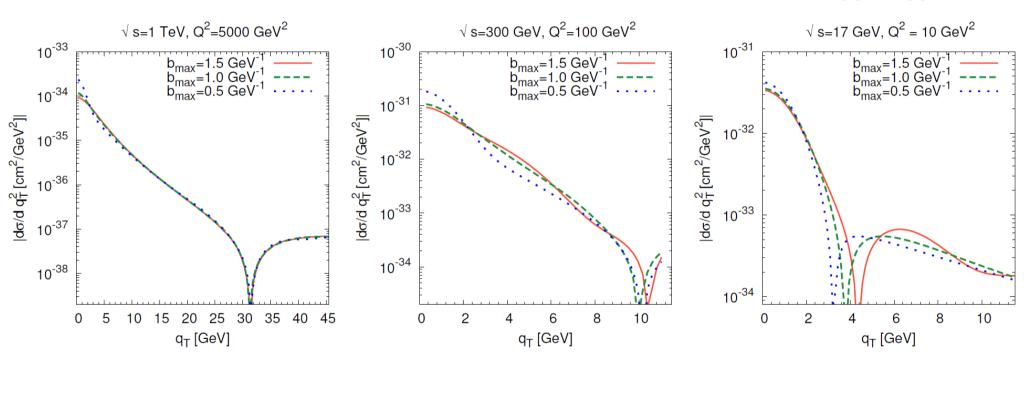


- ✓ The dependence on the parameters of S_{NP} is limited to the small q_⊥ region
- The three curves change sign at the same q_T

- The dependence on the parameters of S_{NP} stretches to the wholel q_T region
- The three curves change sign at slightly different values of q_T
- S_{NP} induces a VERY STRONG dependence on the parameters of the non-perturbative model
- The three curves change sign at very different values of q_T

Dipendence on the b_{max} parameter

HERA



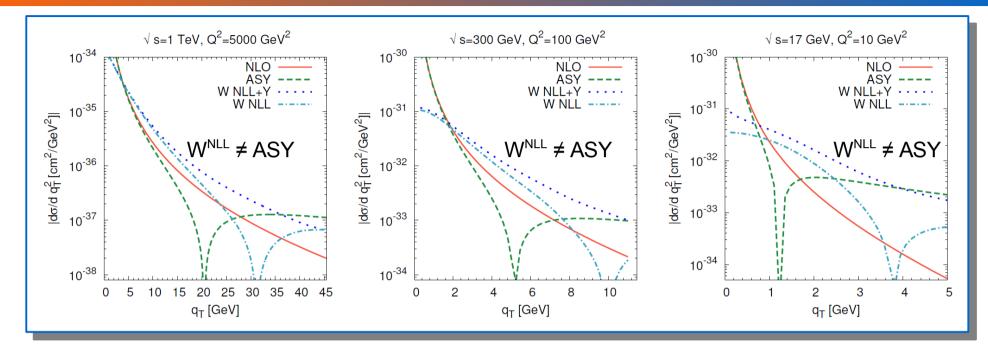
- The dependence on b_{max} is limited to the small q_T region
- The three curves change sign at the same q₊

VERY STRONG dependence on b_{max}

COMPASS

 The three curves change sign at very different values of q_T

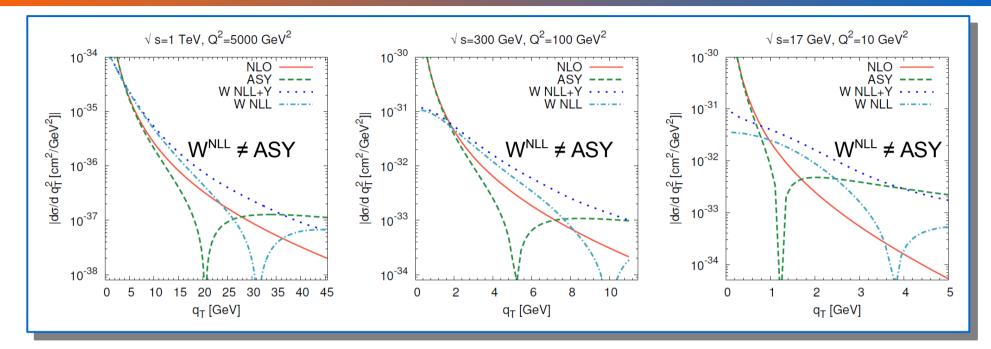
Interplay between perturbative and non-perturbative contributions



At $q_{T} \sim Q$, if $W^{NLL} \rightarrow ASY$ then $W^{NLL} + Y \rightarrow NLO$ At small q_{T} , if Y << W^{NLL} then ASY then $W^{NLL}+Y \rightarrow W^{NLL}$

- Notice that ASY and W become negative at different values of q_T
- ✓ Y can become large compared to W^{NLL} and Y \neq W^{NLL} at small q_T
- The q_T values at which ASY and W become negative depend strongly on the considered kinematics

Interplay between perturbative and non-perturbative contributions



At $q_{\tau} \sim Q$, if $W^{NLL} \rightarrow ASY$ then $W^{NLL} + Y \rightarrow NLO$ At small q_{τ} , if Y << W^{NLL} then ASY then $W^{NLL}+Y \rightarrow W^{NLL}$

IS ANY MATCHING POSSIBLE ???

Fixed order cross section

The fact that $W^{NLL} \neq ASY$ is (partly) due to non-perturbative contributions Therefore, instead of setting $d\sigma = W^{NLL} + Y$, let's try a different matching prescription which takes into account the non-perturbative content of the Sudakov factor

 $d\sigma = W^{NLL} - W^{FXO} + NLO$

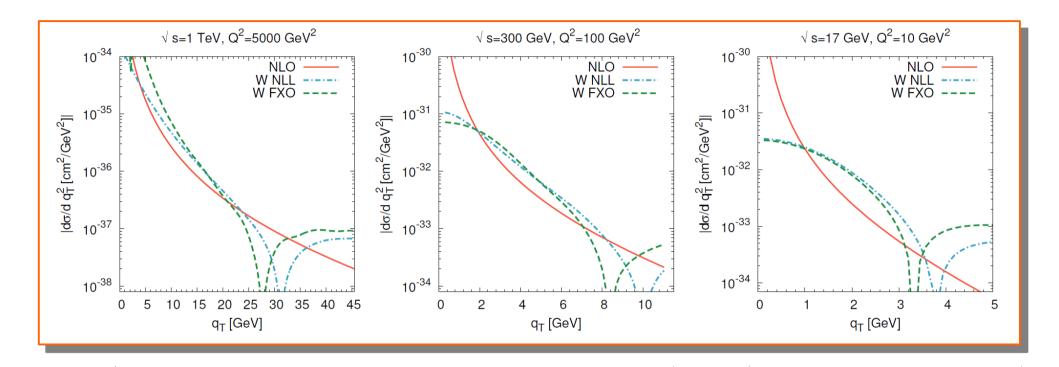
✓ W^{FXO} is the NLL resummed cross section approximated at first order in α_s , with a first order expansion of the Sudakov exponential, exp [S_{pert} (b_∗)] → 1 + S_{pert} (b_∗)

In principle, in the absence of non-perturbative content and in the limit $b_{\tau} \rightarrow 0$ (and $q_{\tau} \rightarrow \infty$) then one can show that $W^{FXO} \rightarrow ASY$, so that when this happens this matching prescription reduces to the Y-term procedure

✓ In general W^{FXO} contains the same non-perturbative content as that we give to W^{NLL}

Therefore, with this prescription we might be able to find kinematical regions in which $W^{FXO} \sim W^{NLL}$

Matching with the inclusion of non-perturbative contributions



At 1 TeV and at HERA there are regions in which W^{FXO} and W^{NLL} are crossing (although not at $q_{\tau} \sim Q$!)

W^{NLL} does not tend to W^{FXO} asymptotically

No continuous and smooth matching can be performed.

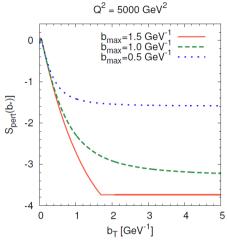
At Compass the non-perturbative regime dominates the whole cross section

 $W^{\mbox{\tiny NLL}}$ and $W^{\mbox{\tiny FXO}}$ never cross

NO MATCHING whatsoever

Why does the matching fail ?

b₋ behaviour of the perturbative Sudakov factor



The Sudakov factor is small only over a very limited range of small b_

 $Q^2 = 5000 \text{ GeV}^2$

exp(Spert) NLL

2

At 1 TeV the perturbative fixed

exponential breaks down

b_T [GeV⁻¹]

3

1+Spert FXO ----

1

0.5

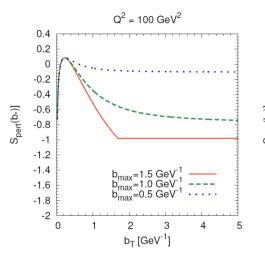
0

-0.5

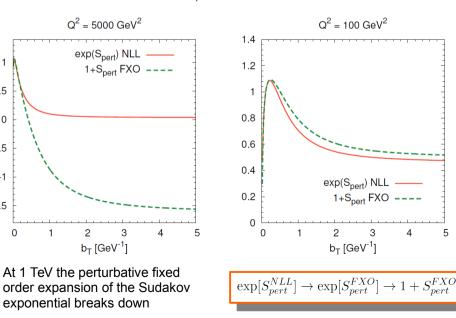
-1

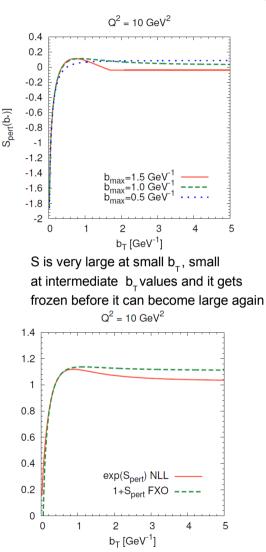
-1.5

0



The Sudakov factor is small only over a very limited range of intermediate b_



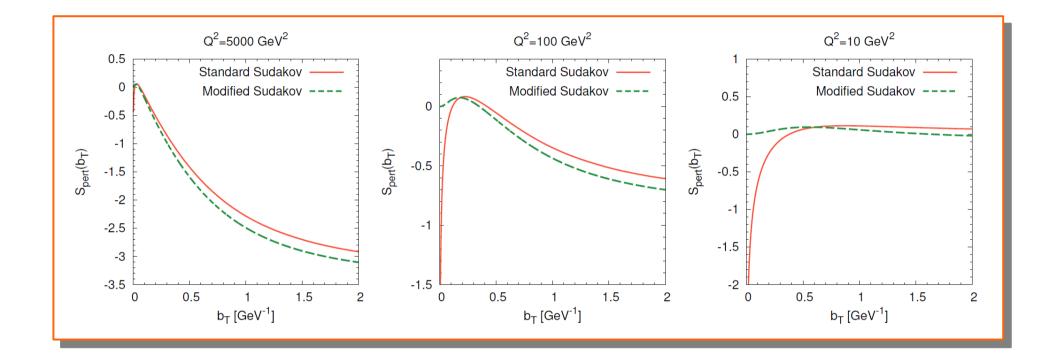


At COMPASS both the Sudakov and its perturbative expansion are unphysically enhanced (> 1)

9/12/2014

M. Boglione - REF 2014 - Antwerpen

b_r behaviour of the modified perturbative Sudakov factor



The unphysical behaviour of the perturbative Sudakov factor at $b_{\tau} \rightarrow 0$ can be corrected by replacing

$$\log(Q^2/\mu_b^2) \to \log(1+Q^2/\mu_b^2)$$

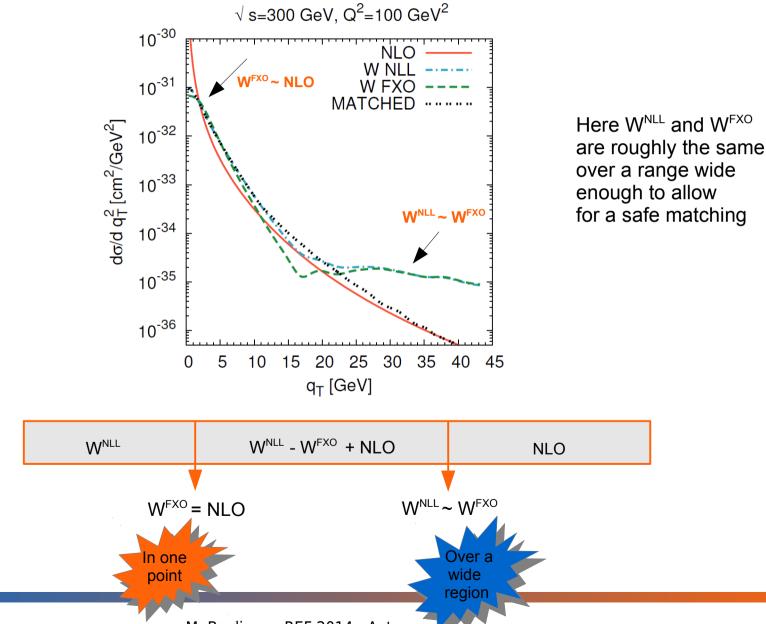
Can we finally obtain a successful matching ?

Can we finally obtain a successful matching ?

In general the answer is NO

HERA

A case when this matching works ... roughly

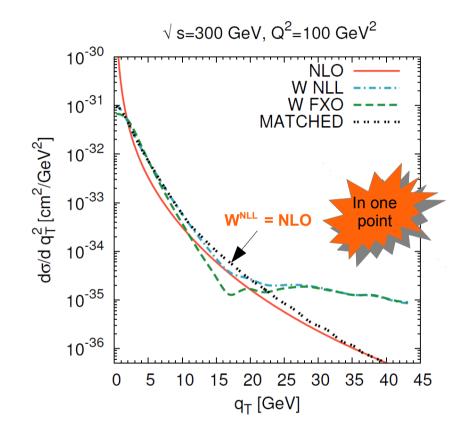


9/12/2014

M. Boglione - REF 2014 - Antwerpen

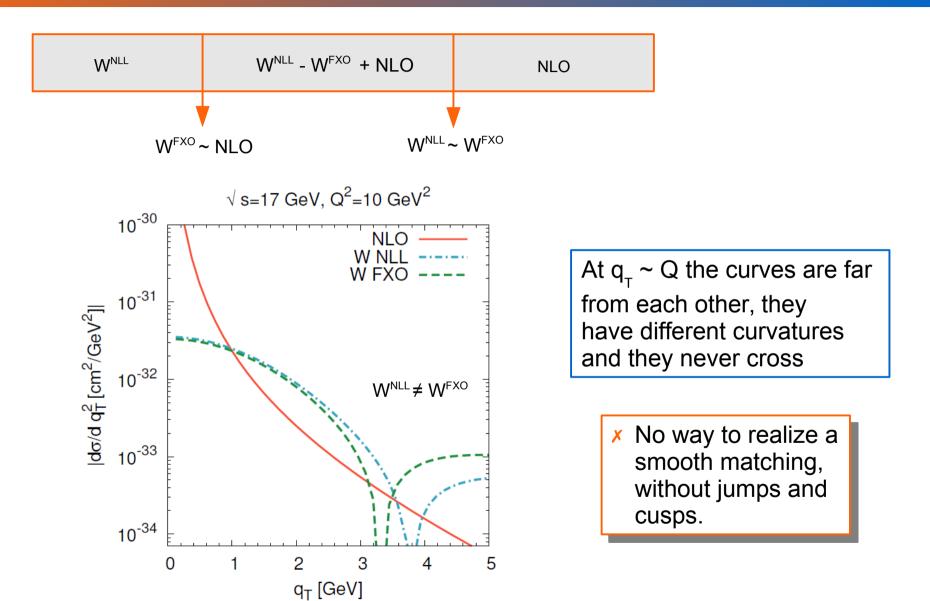
HERA

A case when this matching works ... roughly



Notice that one could join W^{NLL} (blue line) directly to NLO (red line) at $q_{\tau} \sim 15 - 16 \text{ GeV}$

COMPASS ... a case when the matching does not work



- We studied the matching between the region where fixed order perturbative QCD can successfully be applied and the regions where soft gluon resummation is necessary.
- We found that the commonly used matching prescription through the Y-factor fails in the kinematical configurations considered.
- The non-perturbative component of the resummed cross section plays a crucial role even at high energies.
- The perturbative expansion of the resummed cross section in the matching region is not as reliable as it is usually believed and its treatment requires special attention.

- ✓ Resummation in the impact parameter b_T space is a very powerful tool. However, it's successful implementation is affected by a number of practical difficulties (the kinematics of the process, the parameters used to model the non-perturbative content of the SIDIS cross section, etc ...).
- ✓ Performing phenomenological studies in the b_{τ} space is rather difficult, as we loose the direct connection of our inputs to the exact outcome in the conjugate q_{τ} space.

It becomes hard to define the boundaries of the three regions of interest:

 $q_{\tau} \sim \lambda_{_{QCD}} << Q$, $\lambda_{_{QCD}} << q_{\tau} << Q$, $q_{\tau} \sim Q$, $q_{\tau} > Q$.

✓ Matching prescriptions have to be applied to achieve a reliable description of the SIDIS process over the full q_{τ} range, going smoothly from one region to the following.

Non perturbative contributions

$$\frac{d\sigma}{dxdzdQ^2d^2q_T} = \sigma_0^{SIDIS} \left\{ \int \frac{d^2 \boldsymbol{b}_T e^{i\boldsymbol{q}_T \cdot \boldsymbol{b}_T}}{(2\pi)^2} \sum_j e_j^2 W_j^{SIDIS}(x, z, b_T, Q) + Y^{SIDIS} \right\}$$

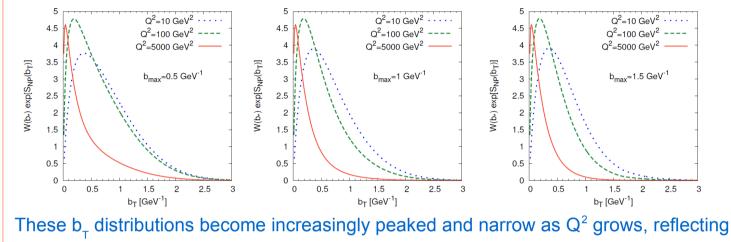
- The CSS formalism relies on a Fourier integral which runs from 0 to ∞ No prediction can be made without an ansatz prescription for the non–perturbative region, where b_⊥ is large (and q_⊥ is small 𝔅).
- The Sudakov factor diverges at large b_τ

$$S_j(b_T, Q) = \int_{C_1^2/b_T^2}^{Q^2} \frac{d\kappa^2}{\kappa^2} \left[A_j(\alpha_s(\kappa)) \left(\ln\left(\frac{Q^2}{\kappa^2}\right) + B_j(\alpha_s(\kappa)) \right) \right]$$

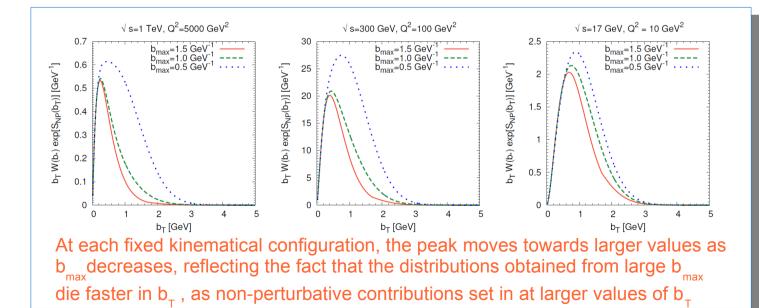
In the CSS scheme a prescription is used to avoid entering the non-perturbative region, such that

$$b_* = \frac{b_T}{\sqrt{1 + b_T^2/b_{max}^2}}$$
 $\mu_b = C_1/b_*$

b_r behaviour of the integrand



the dominance of smaller and smaller b_{T} contributions at growing energies and Q^2



M. Boglione - REF 2014 - Antwerpen