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Introduction

• The LHC has restarted its collisions with a center-of-mass energy of 13 TeV on its way to 
discover new physics 

• The observed Higgs boson has confirmed the SM as a very well working low energy theory 

• Nevertheless we have many reasons to believe that it needs a generalisation. The measured 
Higgs mass does not give us a hint about it - it neither favours nor disfavours SUSY 

• Although there is no sign of new particles yet, the MSSM is still favoured as a discoverable 
theory beyond the SM and will be searched with high priority at CMS and ATLAS 

• The MSSM has been studied a lot (as much as it could be due to its many free parameters). 
Nevertheless it has yet unstudied potential related to more general treatment of its squark 
sector parameters 

• Despite the stringent constraints from B and K physics, such parameters can lead to quark-
flavour violation (QFV) and can change the phenomenological observables significantly 

• We study the impact of QFV on the squark production at hadron colliders, taking into 
account the next-to-leading order SUSY-QCD corrections in the MSSM with general quark 
flavour-mixing



General quark-flavour mixing in the MSSM

• In the SM all QFV terms are proportional to the CKM matrix 

• In the general MSSM there are two concepts: 
 
* Minimal quark flavour violation - no new sources of QFV, in 
the super-CKM basis the squarks undergo the same rotations 
like the quarks, all flavour-violating entries are related to the 
CKM matrix (e.g.                       )  
 
* Non-minimal quark flavour violation - new sources of QFV, 
independent on the CKM, considered as free parameters in 
the theory 

• In the following we assume non-minimal quark  
flavour violation
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ũR

c̃R
t̃R

1

CCCCCCCCA

• The mass eigenstates are obtained after diagonalization with a 6x6 
rotation matrix 
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• The 3x3 soft SUSY-breaking matrices can introduce QFV (off- 
diagonal ) terms, e.g. in the up-squark sector

General quark-flavour mixing in the MSSM
• The flavour-violating terms are contained in the mass matrices of 

the squarks at the electroweak scale
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RũM2
ũU
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• Dimensionless QFV parameters are introduced in the up-type 
sector (           )  
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• And in the down-type sector

General quark-flavour mixing in the MSSM



the process                   
• The tree-level squark production cross section at LHC was previously studied in the context of 

QFV subsequent squark decays  
[A. Bartl, H. Eberl, B. Herrmann, K. Hidaka, W. Majerotto, W. Porod ,Phys.Lett.B698:380-388,2011] 

• It was shown that the quark flavour-mixing can influence squark masses, their flavour-
decomposition and the production cross section, as well as to open new decay channels, non 
existing in the SM, nor in the QFC MSSM, characteristic signatures 

• The study also showed that the dependence on the QFV parameters can be recognisable 
already at tree-level - a good motivation to study the leading 1-loop contributions  

pp ! q̃i¯̃qj

http://lanl.arxiv.org/find/hep-ph/1/au:+Bartl_A/0/1/0/all/0/1
http://lanl.arxiv.org/find/hep-ph/1/au:+Eberl_H/0/1/0/all/0/1
http://lanl.arxiv.org/find/hep-ph/1/au:+Herrmann_B/0/1/0/all/0/1
http://lanl.arxiv.org/find/hep-ph/1/au:+Hidaka_K/0/1/0/all/0/1
http://lanl.arxiv.org/find/hep-ph/1/au:+Majerotto_W/0/1/0/all/0/1
http://lanl.arxiv.org/find/hep-ph/1/au:+Porod_W/0/1/0/all/0/1


the process

• #1 We study: squark-antisquark pair production in proton 
collisions                    

• #2 Next step: squark pair production, straight forward  
once #1 is completed 

• The matrix elements squared are generated with FeynArts/
FormCalc (axial gauge) 

• The couterterms are missing there, own calculation 

• Everything is implemented in an own Fortran code

pp ! q̃i¯̃qj



the process - tree-level

At parton level proceeds from: 

• gluon-gluon initial state 

pp ! q̃i¯̃qj

• quark-antiquark initial state  



• from quark-antiquark initial state: matrix elements 
squared of the s- and t-channel, and interference term 
 

pp ! q̃i¯̃qj the process - tree-level



• from gluon-gluon initial state: matrix elements squared of the s-, t- 
and u-channel, 4-point interaction, as well as the interference terms  
 

the process - tree-levelpp ! q̃i¯̃qj



• Here 
 

the process - tree-levelpp ! q̃i¯̃qj

r = 0 : DR scheme

r = 1 : MS scheme
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• Summing up and taking             we get the 4-dimensional 
result in agreement with the limiting cases  
 

" ! 0

• Next we have to integrate the spin and colour averaged squared matrix 
elements over the phase space to get the partonic cross section 

• And then we have to integrate the partonic cross section over the 
PDFs to get the hadronic cross section  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the process - tree-levelpp ! q̃i¯̃qj
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the process -1-looppp ! q̃i¯̃qj

• 1-loop calculations introduce UV and IR divergences: 
require renormalisation, most involving part of the project 

• Present status:  
 
UV problem - solved! Our code is already UV 
convergent!  
 
IR problem - main part solved! Still some work to do 

• Now details  
 



1-loop UV renormalisation
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pp ! q̃i¯̃qj



• Field renormalisation: bare fields as functions of the renormalised 
ones 

1-loop UV renormalisationpp ! q̃i¯̃qj



• Parameter renormalisation: shifts quark, squark and gluino masses

• requires redefinition of the squark mixing matrices 

• and shifts the strong coupling constant

pp ! q̃i¯̃qj 1-loop UV renormalisation

• All the renormalisation constants and parameter shifts are 
calculated, everything works good, the process is UV convergent!



1-loop IR problem

• For the real radiation part we use phase space slicing 
technique

�ren = �tree + �virt(�IR,�
2
IR) + �real(�IR,�

2
IR,�Eg)

• we have 2 cuts in the game:   

• but effectively only 1: 

�Eg,�cos✓

�Eg

�real = �3,hard(�IR,�Eg) + �soft(�IR,�
2

IR,�Eg) + �coll(�IR,�Eg)

pp ! q̃i¯̃qj



              1-loop IR problem - hard radiation

• Real radiation contributions for each squark sector up/down  

    * s-channel: 7 graphs                            * s-channel: 6 graphs  
    * t-channel:  7 graphs                            * t-channel:  5 graphs  
    * u-channel: 7 graphs 
    * 4-point interaction: 4 graphs

pp ! q̃i¯̃qj



• The 2     3 contributions to the partonic cross section 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• The soft region is defined in terms of gluon energy in the rest frame 
of the incoming partons

• We parametrise the divergences using dimensional regularisation  
[B. W. Harris, J. F. Owens, PhysRevD.65.094032]  

• The result in n (=D) dimensions 
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              1-loop IR problem - soft radiationpp ! q̃i¯̃qj

http://xxx.lanl.gov/find/hep-ph/1/au:+Harris_B/0/1/0/all/0/1
http://xxx.lanl.gov/find/hep-ph/1/au:+Owens_J/0/1/0/all/0/1


• Still unfinished - the colour linked Born amplitudes in n (=D) dimensions 
for gluon-gluon initial state and the cross-check of the eikonal integrals

d�0
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1

2�

X
M0

ff 0d�2

pp ! q̃i¯̃qj              1-loop IR problem - soft radiation

• where                               

Z �pf · pf 0

pf · p5 pf 0 · p5
dS

• The colour linked Born amplitudes in for quark-antiquark initial state are 
calculated and checked

• We have derived all eikonal integrals using the integrals of t'Hooft Veltman   
and making the transformation  

are the colour linked Born amplitudes in n (=D) dimensions                                                         

• and                             

are the eikonal integrals in n (=D) dimensions                                                         

Status:                             

ln�2 ! ��+ lnµ2

[t’Hooft, Veltman, Nucl. Phys B153 (1979) 365]



• When a gluon is radiated off in the same direction - parameterised with the 
angle between the initial and the radiated gluons  

• The problem requires mass factorisation - in principle can be done in DREG 
and in DRED schemes 

• We work in DRED - 4-dimensional gluon, does not break SUSY, but additional 
epsilon scalars contributions have to be calculated  
 

                   1-loop IR problem - collinear divergencespp ! q̃i¯̃qj

|MGG|2 = |Mgg|2 + |M��|2

• These are two graphs



• Their contribution gives 
 

                   1-loop IR problem - collinear divergencespp ! q̃i¯̃qj
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• Here the x=1 regions are missing 
 

• As a cross-check we will do the whole IR renormalisation also in the 
dipole function formalism  



• When having everything done at parton level, we need to 
integrate over the PDFs to get the hadronic cross section 

• In our approach with only one cut           this procedure 
reduces to the one in the tree-level case  
 

  hadronic cross sectionpp ! q̃i¯̃qj

�Eg



ConclusionsFlavour up the 
physics!

Renormalisation 
rocks!

• We study squark production at LHC including next-to-leading 
order SUSY-QCD corrections within the MSSM with non-minimal 
flavour violation. The project is still on-going, at present: 

• We already have a UV convergent result 

• The process is still not completely free from IR divergences though 

• For a complete result missing: color linked Born amplitudes for 
gluon-gluon and the cross-check of the eikonal integrals in D 
dimensions for the mass factorisation procedure 

• We are soon to be ready with this job and make many beautiful 
plots for our paper, so stay tuned!!! 
 



Thank you!



                    1-loop IR problem, collinear divergences- extra

• For massless quarks we have an additional contribution from the kind 
 
 
 
 

• Here we can only have collinear divergences 

• There exists a resonant graph with gluino 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p
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pp ! q̃i¯̃qj

• We have removed this contribution by requiring the following  kinematic 
conditions to be true



• We can write the phase space integrals as 
 
 
 
where F(x) is related to the 2     3 matrix element 

• Phase space slicing method - the integration is divided in 
two parts                and                 for 

• Maclaurin expansion of F(x)  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                     1-loop IR problem, collinear divergences- extrapp ! q̃i¯̃qj



• It is then simple to get the coefficient of the divergence:  
 
                                      with 

• For two small values we get the same integral  
 
 

• We use this procedure to get rid of the second (cos theta) 
cut and to use one-cutoff technique in the mass factorisation  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                     1-loop IR problem, collinear divergences- extrapp ! q̃i¯̃qj


