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Introduction

The LHC has restarted its collisions with a center-of-mass energy of 13 TeV on its way to
discover new physics

The observed Higgs boson has confirmed the SM as a very well working low energy theory

Nevertheless we have many reasons to believe that it needs a generalisation. The measured
Higgs mass does not give us a hint about it - it neither favours nor disfavours SUSY

Although there is no sign of new particles yet, the MSSM is still favoured as a discoverable
theory beyond the SM and will be searched with high priority at CMS and ATLAS

The MSSM has been studied a lot (as much as it could be due to its many free parameters).
Nevertheless it has yet unstudied potential related to more general treatment of its squark
sector parameters

Despite the stringent constraints from B and K physics, such parameters can lead to quark-
flavour violation (QFV) and can change the phenomenological observables significantly

We study the impact of QFV on the squark production at hadron colliders, taking into
account the next-to-leading order SUSY-QCD corrections in the MSSM with general quark
flavour-mixing




General quark-flavour mixing in the MSSM

* |nthe SM all QFV terms are proportional to the CKM matrix

* Inthe general MGSM there are two concepts:

* Minimal quark flavour violation - no new sources of QFV, in
the super-CKM basis the squarks undergo the same rotations
ike the quarks, all flavour-violating entries are related to the

CKM matrix (e.9. Xi Gidj ~ Vaq! )

* Non-minimal quark flavour violation - new sources of QFV,
independent on the CKM, considered as free parameters in

the theory

* Inthe following we assume non-minimal quark
flavour violation




General quark-flavour mixing in the MSSM
e The flavour-violating terms are contained in the mass matrices of
the squarks at the electroweak scale
o ( M?jLL M%LR )
M2 = ’ ’ L qg=u,d

q

e The 3x3 soft SUSY-breaking matrices can introduce QFV (off-

diagonal ) terms, e.g. in the up-squark sector
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General quark-flavour mixing in the MSSM

 Dimensionless QFV parameters are introduced in the up-type
sector (a # )
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* And in the down-type sector
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pp — qi4, the process

* The tree-level squark production cross section at LHC was previously studied in the context of

QFV subsequent squark decays
[A. Bartl, H. Eberl, B. Herrmann, K. Hidaka, W. Majerotto, W. Porod ,Phys.Lett.B698:380-388,2011]

* |t was shown that the quark flavour-mixing can influence squark masses, their flavour-
decomposition and the production cross section, as well as to open new decay channels, non
existing in the SM, nor in the QFC MSSM, characteristic signatures

* The study also showed that the dependence on the QFV parameters can be recognisable
already at tree-level - a good motivation to study the leading 1-loop contributions
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PP — 4iq; the process

 #1 We study: squark-antisquark pair production in proton
collisions

* #2 Next step: squark pair production, straight forward
once #1 i1s completed

* The matrix elements squared are generated with FeynArts/
FormCalc (axial gauge)

* The couterterms are missing there, own calculation

+ Everything is implemented in an own Fortran code | a




pp — q; j  the process - tree-level

D —

At parton level proceeds from:
e quark-antiquark initial state
q(pa) 7' (pv) — qi(p1) 45" (p2)

a i a a
* gluon-gluon initial state
9(pa) 9(pv) = ¢i(p1) ¢;* (p2)
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pp — éjz@ the process - tree-level

e from quark-antiguark initial state: matrix elements
squared of the s- and t-channel, and interference term
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pp — CZ@ the process - tree-level

e from gluon-gluon initial state: matrix elements squared of the s-, t-
and u-channel, 4-point interaction, as well as the interference terms
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PP — 4id;  the process - tree-level

e Here

r=0: DR scheme

r=1: MS scheme
1 1
A=—-—=—+Indr —~
g €
D=n=4-—2¢




PP — Gi4;  the process - tree-leve

* Summing up and taking € — 0 we get the 4-dimensional
result in agreement with the limiting cases
W. Beenakker, R. Hopker, M. Spira, and P. M. Zerwas, “Squark and gluino production at hadron colliders,” Nuecl. Phys.
B492 (1997) 51-103, arXiv:hep-ph/9610490.

T. Gehrmann, D. Maitre, and D. Wyler, “Spin asymmetries in squark and gluino production at polarized hadron

colliders,” Nucl. Phys. B703 (2004) 147-176, arXiv:hep-ph/0406222.
G. Bozzi, B. Fuks, and M. Klasen, “Non-diagonal and mixed squark production at hadron colliders,” Phys. Rev. D72

(2005) 035016, arXiv:hep-ph/0507073.
G. Bozzi, B. Fuks, B. Herrmann, and M. Klasen, “Squark and gaugino hadroproduction and decays in non- minimal
flavour violating supersymmetry,” Nuecl. Phys. B787 (2007) 1-54, arXiv:0704.1826 [hep-phl.

* Next we have to integrate the spin and colour averaged squared matrix
elements over the phase space to get the partonic cross section

1 1=
g(s) :2—8/_12\M|2d0089

 And then we have to integrate the partonic cross section over the
PDFs to get the hadronic cross section

1
o(ij — qrqi) = / fi(x1)f(x2)0(1] — Grqr; s = x1225)dx1d22
0

{i,5} =1{a¢,a}, {9, 9}



pp — 44 the process -1-loop

* 1-loop calculations introduce UV and IR divergences:
require renormalisation, most involving part of the project

e Present status:

UV problem - solved! Our code is already UV
convergent!

IR problem - main part solved! Still some work to do

e Now detalls



pp — qiqj 1-loop UV renormalisation
O = o e

d all + EEN (1-", U" & 4"p0in1- *
N boxes interaction channels)

*
@ — renormalised
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PP — Qq; ’ 1-loop UV renormalisation
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*v = vertices, s = self energies, x = counter terms

:
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P — éjzczj 1-loop UV renormalisation

e Field renormalisation: bare fields as functions of the renormalised
ones

” =(\/ZL) o |6 1+1(<>Z) ] ,
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P — ; 1-loop UV renormalisation

 Parameter renormalisation: shifts quark, squark and gluino masses

M. = (m Ofpr o ('m. + om ) = MgOfs + (5 m ) :
( q,b)ff, ( q,b)f ff q ) ¢ q“ff 1) s1°

2 ~ (24 6m2) = m2 8.0+ (Sm2
(mq,b) T q“bou, a (m.q + qu)iz" — qu_Our + (qu)ii, :

mgp =~ mg+ 0mg ,

* requires redefinition of the squark mixing matrices

-~

(R )zj a~ (Rq)zg (6R?);5 |

* and shifts the strong coupling constant

9sb = s + 595

* All the renormalisation constants and parameter shifts are
calculated, everything works good, the process is UV convergent!
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pp — q; J 1-loop IR problem

ren tree virt 2 real 2
o) — 0 —+ O (A[R,A )—|—O' (A[R,A ,AE )
V4 v IR X IR g
* For the real radiation part we use phase space slicing
technique

el _ o3hard(A e AE,) 4 0% (Agg, A2y, AE,) + 00 (A, AE,)

i v X X

« we have 2 cuts in the game: AFE,, Acost

* but effectively only 1: AE,

B. W. Harris and J. F. Owens, Phys. Rev. D 65 (2002) 094032 [arXiv:hep-ph/0102128]



PP — 4id; 1-loop IR problem - hard radiation

» Real radiation contributions for each squark sector up/down
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* s-channel: 7 grap
*t-channel: 7 grap
* u-channel: 7 grap

S
NS

NS

* 4-point interaction: 4 graphs
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* s-channel: 6 graphs
*t-channel: 5 graphs



PP — 4iq; 1-loop IR problem - soft radiation

e The 2 —3 contributions to the partonic cross section
1 -
O=0y+0g = ﬁ/Z‘Mg‘erg

1 -
g = L/E\M 2dl’
S 20 /s 3 3

e The soft region is defined in terms of gluon energy in the rest frame
of the incoming partons

0 S E5 S (58\/812/2 = AEQ

« \We parametrise the divergences using dimensional regularisation
[B. W. Harris, J. F. Owens, PhysRevD.65.094032]

e The result in n (=D) dimensions

as T'(1 —¢€) [4mu? —Ds D
175 = [27TF(1—26) ( )] 2 d(’ff’/ oS

£, fl= pfp5pf’p5
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PP — 4iq; 1-loop IR problem - soft radiation

l <
. 0o _ 0
where  doyy = oo Mipdls
are the colour linked Born amplitudes in n (=D) dimensions

e and / —Prpr dS
Pr-DPs Pr - Ps

are the eikonal integrals in n (=D) dimensions

Status:

* The colour linked Born amplitudes in for quark-antiquark initial state are
calculated and checked

* We have derived all eikonal integrals using the integrals of t'Hooft Veltman
and making the transformation ~ In A2 — —A + In 12

[t'Hooft, Veltman, Nucl. Phys B153 (1979) 365]

e Still unfinished - the colour linked Born amplitudes in n (=D) dimensions
for gluon-gluon initial state and the cross-check of the eikonal integrals



pp — Qiqj 1-loop IR problem - collinear divergences

 When a gluon is radiated off in the same direction - parameterised with the
angle between the initial and the radiated gluons

e The problem requires mass factorisation - in principle can be done in DREG
and in DRED schemes

 We work in DRED - 4-dimensional gluon, does not break SUSY, but additional
epsilon scalars contfibutions have to be calculated

Meal? = [Mggl® + [ Mol

/

e [hese are two graphs

\ 7/ \ 7/
\ Ve \ /7
\ /~ \ /g@
0 \\ 00QQQ s 4 0 \\‘/
// g \ // \
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pp — Qiqj 1-loop IR problem - collinear divergences

e Their contribution gives

(t—u)2+ng—2>

s2 N,

Mgs|® =€ (ni — 1)g, (

* In DRED for the subtracted hard scattering cross section at NLO, we get

1
[d6B8Ee = [ 0B+ 52~ (
/0 df’fl(P )09 (11)00 4g 533 (1191, D2) + Py (21)d0 553 (2101, p2) )

1—9
-!—/0 ds <P9—>gg (22)dogg—qq- (D1, T2p2) + Posgg(@2)d0gp 44 (1, $2p2))

* Here the x=1 regions are missing

e As a cross-check we will do the whole IR renormalisation also in the
dipole function formalism



PP — 4i4;  hadronic cross section

 When having everything done at parton level, we need to
integrate over the PDFs to get the hadronic cross section

* |n our approach with only one cut AF, this procedure
reduces to the one In the tree-level case



Flavour up the C s Renormalisation
physics! ONCIUSIONS rocks!

e We study squark production at LHC including next-to-leading
order SUSY-QCD corrections within the MSSM with non-minimal
flavour violation. The project is still on-going, at present:

L &

5

 We already have a UV convergent result ».

!

e The process is still not completely free from IR divergences though

e For a complete result missing: color linked Born amplitudes for
gluon-gluon and the cross-check of the eikonal integrals in D
dimensions for the mass factorisation procedure

* We are soon to be ready with this job and make many beautiful
plots for our paper, so stay tuned!!! ‘
£\







pp — Qiqﬁ—loop IR problem, collinear divergences- extra

e For massless quarks we have an additional contribution from the kind

 Here we can only have collinear divergences

O_real _ O_S,hard(A[R) + O_COII(AIR)

e There exists a resonant graph with gluino q p? =3 ./;\
q

=
q \
N A

 We have removed this contribution by requiring the following kinematic

conditions to be true VE > ma 4+ me-
g q

mg > Mg



pp — Qiqj 1-loop IR problem, collinear divergences- extra

* We can write the phase space integrals as
[see 0102128 and therein Z. Kunszt and D. E. Soper, PRD 46 (1992) 192]

[ = lim {/01 W () — 1F(O)}

e—0T €T €

where F(x) is related to the 2 — 3 matrix element

 Phase space slicing method - the integration is divided In
twopartso<z<dand d <z <1 for § << 1

 Maclaurin expansion of F(x)

I = lim {/05 d—x:zseF(x) + /51 d—xazeF(az) - 1F(O)}

e—0T €T €T €

/51 W P () + F(0)Iné + O®)

X



pp — Qiqj 1-loop IR problem, collinear divergences- extra

e |t is then simple to get the coetticient of the divergence:
o dx
[ =F(0)Ind; + I(6; - D= =
O)md; +1(5) iy 1(5) /0 1 F ()

X

e For two small values we get the same integral

[(02) — 1(d1)
Indo; — Inody

F(0) =

* \We use this procedure to get rid of the second (cos theta)
cut and to use one-cutoff technique in the mass factorisation



