

Search for long-lived particles in events with leptons with large impact parameters at CMS

Q. Python
on behalf of the CMS collaboration

references: Phys. Rev. Lett. 114 (2015) 061801

Phys. Rev. D 91 (2014) 052012

Q.Python 1 SUSY 2015 August 27, 2015

Outline

- Context and Motivation
- E-mu Search (no vertex constraint)
- Dilepton same vertex Search (same flavour)
- Recasting
- Run2 analysis
- Summary

Beyond the Standard Model (BSM) searches at the LHC

- There is various motivations for SUper SYmmetry (SUSY). SUSY is getting more and more constrained by direct searches by ATLAS and CMS
- Most of these searches use prompt leptons, jets and/or missing energy
- There are SUSY models that might have been overlooked. No stone should be left unturned!
- In some models, SUSY particles have long lifetime. Other BSM models predict long-lived particles.

Signal model

Displaced Supersymmetry as a bench mark model

Event selection

1: Preselection

e-μ pair passing: $|\eta| < 2.5$ $p_T > 25 \text{ GeV}$ |lepton ID*/ |isolation $\Delta R(I, \text{jet}) > 0.5$ $100 \text{ μm} < d_0 < 2$ cm $\Delta R(e, \mu) > 0.5$

 $q_{e} * q_{\mu} = -1$

2: Region Definition

Prompt control region

$$|d_0| < 100 \ \mu m$$

Signal regions

$$200 \ \mu m < |d_0| < 500 \ \mu m$$

$$500 \ \mu m < |d_0| < 1 \ mm$$

$$1 \text{ mm} < |d_0| < 2 \text{ cm}$$

Background sources

- 1. Leptons from heavy flavour QCD decays (referred to as "QCD")
 - Real displacement due to B,D meson lifetime
 - Data-driven prediction from sidebands

2. Z→ττ→eμ

- Real displaced leptons due to τ lifetime
- Taken from MC prediction after validating in control regions
- 3. Prompt SM backgrounds
 - W→Iv+jets, Z→ee/µµ, ttbar, single top, diboson
 - <10% of background, taken from (validated) MC prediction

August 27, 2015

Q.Python

Exclusion curve

Event source SR1		SR2	SR3	
Total expected bkgd.	$18.0 \pm 0.5 \pm 3.8$	$1.01 \pm 0.06 \pm 0.30$	$0.051 \pm 0.015 \pm 0.010$	
Observed	19	0	0	

Number of observed events is consistent with the expected background

sensitivity limited by:

short lifetime: prompt backgrounds

long lifetime: signal acceptance

Q.Python 10 SUSY 2015 August 27, 2015

Signal model

R-parity violating supersymmetry

arXiv:hep-ph/0406039

$$\tilde{q} \rightarrow q \tilde{\chi}^0$$
, $\tilde{\chi}^0 \rightarrow |+|-\nu$

Discovering the Higgs through highly-displaced vertices

arXiv:hep-ph/0605193

$$H \rightarrow XX, X \rightarrow |+|-$$

Event selection

1: muons

 $|\eta| < 2$ $p_T > 26 \text{ GeV}$ isolation $q_{\mu 1^*} q_{\mu 2} = -1$

same vertex $m_{II} > 15 \text{ GeV}$ $\alpha < 2.48$

1: electrons:

 $|\eta| < 2$ $p_T > 36(21)$ GeV $E_T > 40(25)$ GeV isolation no requirement on q_e same vertex $m_{II} > 15$ GeV

2: Control region

 $\Delta \varphi > \pi/2$

3: Signal region

 $d_0/\sigma_d > 12$ $\Delta \varphi < \pi/2$

Background distribution

Background largely dominated by Drell Yann

Q.Python 13 SUSY 2015 August 27, 2015

Exclusion curves

Recasting

Both analyses give useful information to recast their results

E-mu Search

Single limit plot but provide efficiency curves

https://twiki.cern.ch/twiki/bin/view/CMSPublic/DisplacedSusyParametrisationStudyForUser

Dilepton same vertex Search Provide limit plots in which the acceptance is factorised PRD 91(2014)052012 19.6 fb⁻¹ (8 TeV) - m_v = 20 GeV/c² $m_{\perp} = 125 \text{ GeV/c}^2$ $m_x = 50 \text{ GeV/c}^2$ ' m^x = 1000 / 148 GeV/c² Expected limits (±1σ) 10°² XX)B×A(XX • ' m^x = 1500 / 494 GeV/c² Expected limits (±1σ) $m_{\tilde{g}} / m_{\tilde{g}} = 120 / 48 \text{ GeV/c}^2$ _ ı(qq̃+qq̃) B×A(q̃→ q́ o 10⁻³ 10⁻³ 10⁻² 10⁻¹ 10³ 10⁻¹ 20.5 fb⁻¹ (8 TeV) $\sigma(H \rightarrow XX)B \times A(X \rightarrow \mu^{+}\mu^{-}) [pb]$ Observed limits Observed limits m_y = 20 GeV/c² $m_{H} = 125 \text{ GeV/c}^{2}$ $m_{\tilde{g}}^{4} / m_{\tilde{g}}^{\chi} = 350 / 148 \text{ GeV/c}^{2}$ $m_x = 50 \text{ GeV/c}^2$ $/ m_{\sim}^{\chi} = 1000 / 148 \text{ GeV/c}^2$ Expected limits (±1σ) m^q_z / m^χ = 1500 / 494 GeV/c² $m_{_{Y}} = 20 \text{ GeV/c}^2$ Expected limits (±1σ) ให $/ m_{\sim} = 120 / 48 \text{ GeV/c}^2$ 10⁻³ 10⁻² 10⁻¹ 10 10² 10³ cτ [cm]

Run2 analysis

- The final states of the two analyses will be covered in single paper
- Many extensions can be done at 13 TeV
 - Same sign leptons

Significant improvement in the muon acceptance has been achieved for Run2

Summary

- We have presented two searches for long-lived BSM particles with different final states
- Both searches cover a region of parameter space that no previous searches are optimised for
- In the absence of any excess, we have set limits on various models
- Both analyses provide information to recast easily their results to exclude other models

Motivation for Long-lived Searches

- Lots of exciting results in Run 1, but...
 - No physics beyond the standard model observed
- CMS has generally been looking for prompt signatures
- There are many well-motivated scenarios with long-lived

particles

vast majority of previous limits apply to prompt decays

Motivation for this Search

CMS has searches for non-prompt signatures, but they focus on longer lifetimes

- A Higgs at 126 GeV favors shorter
 lifetimes for BSM (⟨cτ⟩ ~100 μm 1 cm)
- This search targets this range. It is designed to explore the gap between prompt and very long-lived signatures

Q.Python 20 SUSY 2015 August 27, 2015

Benchmark Model

- The "Displaced Supersymmetry" model
 - <u>arXiv:1204.6038v1</u> (P. Graham, D. Kaplan, S. Rajendran, P. Saraswat)
 - Small RPV couplings generate long-lived LSP
 - One of many such models
- As benchmark, we consider a stop LSP, decaying as t→bl±

Look for final states containing an electron and a muon

ABCD Methodology

Our goal is to predict the number and do shapes of QCD events in Region B

$$A = B \Rightarrow B = A \times D$$

1. By measuring the QCD events in A,C, and D, we can predict the number of QCD events in B

A B isolated SS OS

C anti-isolated SS D
anti-isolated
OS

2. Then we can scale the events in region D to this number to obtain the d₀ shapes

QCD Impact Parameter Shapes

Take lepton d₀ shapes from data in region D, normalize using yield from ABCD method

Q.Python 23 SUSY 2015 August 27, 2015

MC Validation: Region I

$Z \rightarrow \tau \tau \ control \ region$:

analysis preselection

exactly one electron with $M_T < 50\,\mathrm{GeV}$ exactly one muon with $M_T < 50\,\mathrm{GeV}$ exactly one electron-muon pair with $\Delta\phi > 2.5$ $\sum p_{\mathrm{T}_{jet}} < 100\,\mathrm{GeV}$

- Negligible QCD contribution
- Limited statistics restrict |d₀| range
- Shows good data/MC agreement at high d₀

CMS-PAS-B2G-12-024

Summary of Systematic Uncertainties on background and signal yield

Dataset	Cross-section	Pileup	e ID/ISO	μ ID/ISO	PDF	Total
$\overline{W} \rightarrow l\nu$	±3.5%	±0.07%	$\pm 0.42\%$	±0.61%	±0.66%	±11.0%
diboson	±6.2%	$\pm 0.28\%$	$\pm 0.35\%$	$\pm 0.63\%$	$\pm 0.59\%$	$\pm 9.0\%$
single top	±6.9%	$\pm 0.17\%$	$\pm 0.29\%$	$\pm 0.64\%$	$\pm 2.15\%$	$\pm 9.4\%$
t t	$\pm 4.3\%$	$\pm 0.19\%$	$\pm 0.49\%$	$\pm 0.56\%$	$\pm 0.11\%$	$\pm 8.0\%$
$Z\rightarrow ll$	$\pm 4.6\%$	$\pm 0.21\%$	$\pm 0.29\%$	$\pm 0.64\%$	$\pm 1.66\%$	$\pm 8.1\%$
QCD		_			_ \ \	±30%
signal	±15-28%	± 0.1 -5.4%	±0.13-0.29%	±0.9-3.8%	±0.06-4.6%	±15-28%

Additional systematics on MC included in the "Total" column:

Luminosity: 2.6%

Trigger Efficiency: 2.0%

Displaced Track Reconstruction Efficiency: 5.7% Matching and Scale Uncertainty (ttbar and W)