Searches for dark matter in association with top quarks at CMS

SUSY 2015, Lake Tahoe, August 24th 2015

Jónatan Piedra

for the CMS Collaboration IFCA (CSIC - Universidad de Cantabria)

introduction

- dark matter (DM) is estimated to account for about 23% of the total mass of the Universe
 - how does it interact with ordinary matter?
 - a weakly interacting massive particle arises naturally in several models of physics BSM such as supersymmetry
- at CMS we have looked for DM in association with one or two top quarks
- tt + DM
 - the DM particle is assumed to interact with quarks via a four-fermion contact interaction, which can be described by an EFT
 - sensitivity for a scalar interaction can be improved by searching for final states with third generation quarks
 we have considered only scalar coupling between DM and top quarks
- t + DM
 - the invisible particle can be either a scalar or a vector boson
 - assume invisible-to-up-quark coupling strengths $a_{FC} = 0.1$

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G

missing transverse energy

- the energy imbalance in the transverse plane (MET) is crucial to distinguish DM from SM
 - the MET strongly depends on a proper determination of the jet energy scale
 - in addition, a lot of effort has been put in place to mitigate the impact of pileup events on the MET
 - fake high MET events have been removed with dedicated filters, like misfires of the HCAL laser calibration and electronics noise in HB and HE

a similar effort on the identification of anomalous MET events is ongoing with 13 TeV data

pt sum of the two leptons > I20 GeV

- dominant backgrounds are tt+jets, single top, diboson
- largest systematic uncertainties are JES and top *pt* reweighing
- semileptonic final state JHEP 06 (2015) 121
 - at least three jets
 - at least one b-jet
 - only one prompt isolated lepton
 - MET > 320 GeV
 - $m_T > 160$ GeV against semileptonic tt and W+jets (for them $m_T < m_W$)
 - dominant background is tt dileptonic with a lost lepton \implies use $m_{T2}w > 200 \text{ GeV}$ (see backup)

dileptonic final state **B2G-13-004**

- exactly two isolated leptons out of the Z peak
- at least two jets
- the signal has two dark matter particles MET > 320 GeV
- pt sum of the two leading jets < 400 GeV

tt+DM MET distributions

dileptonic

semileptonic

tt+DM final yields

semileptonic

			, 	
alleptonic		Source	Vield (+stat +syst)	
Background Source	Yield	Dource	1 ICIU (±5000 ±5950)	
$t\bar{t}$	$0.87 \pm 0.18 \pm 0.27$	$t\overline{t}$	$8.2 \pm 0.6 \pm 1.9$	
Single top	$0.48 \pm 0.46 \pm 0.09$	W	$5.2 \pm 1.8 \pm 2.1$	
Di-boson	$0.32 \pm 0.09 \pm 0.05$			
Drell-Yan	$0.19 \pm 0.14 \pm 0.03$	Single top	$2.3 \pm 1.1 \pm 1.1$	
One Mis-ID lepton	$0.02 \pm 0.07 \pm 0.02$	Diboson	$0.5\pm0.2\pm0.2$	
Double Mis-ID leptons	$0.00 \pm 0.00 \pm 0.00$			
Total Bkg	$1.89 \pm 0.53 \pm 0.39$	Drell-Yan	$0.3 \pm 0.3 \pm 0.1$	
Data	1	Total Bkg	$16.4 \pm 2.2 \pm 2.9$	
Signal	$1.88 \pm 0.11 \pm 0.07$	Data	18	
100 GeV DM mass		Data	10	

100 GeV DM mass 100 GeV interaction scale

- in both cases the main background is ttbar
 - 46% (50%) for the dileptonic (semileptonic) channel
 - the 8 TeV ttbar cross section is 253 pb

tt+DM limits

assuming 100 GeV DM the interaction scale is excluded at 95% CL below 90 GeV

assuming 100 GeV DM the interaction scale is excluded at 95% CL below 119 GeV

the limits on the interaction scale can be translated to limits on the DM-nucleon scattering cross section

search for monotop signatures

• $t \rightarrow bW \rightarrow bqq'$ selection

- pt > 60 GeV for first 2 jets, pt > 40 GeV for third
- *m3jet* < 250 GeV
- one b-tag
- reject events with isolated leptons
- MET > 350 GeV
- main backgrounds
 - tt+jets
 - W+jets and Z+jets estimated from CR which requires I (W) or 2 (Z) isolated leptons

PRL 114, 101801 (2015)

m3jets for events with 1 b-tag

the signal xs and multijet background are both measured using a likelihood, based on the observed events with no b-tag and 1 b-tag

with no b-tag (I-btag) the dominant backgrounds are V+jets (tt+jets and Z+jets)

	No b tag	One <i>b</i> tag
$t\bar{t}$	$6\pm0\pm5$	$12 \pm 0 \pm 12$
W + jets	$18\pm9\pm7$	$3\pm1\pm2$
Z + jets	$103\pm33\pm9$	$11\pm10\pm1$
Single top	$2\pm1\pm1$	$1\pm1\pm1$
VV'	$5\pm0\pm0$	$0\pm 0\pm 0$
Multijet	$6(\pm 39)$	$1(\pm 9)$
Total background	140 ± 36	28 ± 16
Signal	2 ± 6	3 ± 11
Data	143	30

monotop + DM results

the observed lower limits on mass for invisible particles are set at 330 GeV (scalar) and 650 GeV (vector). For a coupling constant $a_{FC} = 0.2$ these limits increase to 530 and 930 GeV

conclusions

• no excess of events has been found above the standard model expectation

- in the tt + DM dileptonic channel, cross sections higher than 0.09 to 0.31 pb are excluded at the 95% CL for dark matter particles with masses ranging from 1 GeV to 1 TeV
- in the tt + DM semileptonic channel, cross sections higher than 20 to 55 fb are excluded at the 95% CL
- in the t + DM hadronic channel scalar (vector) invisible masses below 330 (650) GeV have been excluded
- exciting work is on going with 13 TeV data
 - document written by ATLAS and CMS on the benchmark models for early Run 2 searches (arXiv:1507.00966)
 - how do the couplings change the kinematics?
 - how does the mediator mass change the kinematics?
 - use simplified models
- additional top decay channels coming at 13 TeV
- adding boosted top decays at 13 TeV
- even if CMS wasn't designed for DM searches, promising results are ahead of us

minimal "parent" particle mass compatible with all the transverse momenta and mass-shell constraints, assuming two identical parent particles, each of mass m_y, decaying to bW

$$M_{\rm T2}^{\rm W} = \min\left(m_{\rm y} \text{ consistent with: } \left\{ \begin{aligned} \vec{p}_1^{\rm T} + \vec{p}_2^{\rm T} &= \vec{p}_{\rm T}^{\rm miss}, p_1^2 = 0, (p_1 + p_\ell)^2 = p_2^2 = M_{\rm W}^2, \\ (p_1 + p_\ell + p_{\rm b1})^2 &= (p_2 + p_{\rm b2})^2 = m_{\rm y}^2 \end{aligned} \right\} \right)$$