Search for dark matter in multijet events at CMS

Norraphat SRIMANOBHAS (Chulalongkorn U., Thailand) on behalf of the CMS Collaboration

23rd International Conference on Supersymmetry and Unification of Fundamental Interactions, Aug. 23-29, 2015 Granlibakken Conference Center and Lodge, Tahoe, CA, USA

	Dirac fermion, 1008.1783					
D1 ★	$\bar{\chi}\chi\bar{q}q$	m_q/M_*^3				
D2	$\bar{\chi}\gamma^5\chi\bar{q}q$	im_q/M_*^3		Majorana fermion,	1005.1286	
D3	$\bar{\chi}\chi\bar{q}\gamma^5q$	im_q/M_*^3	M1	aa	$m_o/2M_{\odot}^3$	
D4	$\bar{\chi}\gamma^{3}\chi\bar{q}\gamma^{3}q$	m_q/M_*^3	M2	00	$im_{e}/2M^{3}$	
D5 🛣	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$	1/M ²	M3	11	$im_{\star}/2M^3$	
D6	$\bar{\chi}\gamma^{\mu}\gamma^{3}\chi\bar{q}\gamma_{\mu}q$	1/M*	MA	44	$m_q/2M_*$	
D^{\prime}	$\chi \gamma^{\mu} \chi q \gamma_{\mu} \gamma^{\nu} q$	1/M*	111-4	44	1/2M2	
	$\chi \gamma^{\mu} \gamma^{\nu} \chi q \gamma_{\mu} \gamma^{\nu} q$	1/M.	M5	99	1/2M*	
D9 D10	$\chi \sigma^{\mu\nu} \chi q \sigma_{\mu\nu} q$	1/M= ;/M2	M6	qq	1/2M ²	
D10	$\chi \sigma_{\mu\nu} \gamma^{\nu} \chi q \sigma_{\alpha\beta} q$	1/1VI=	M7	GG	$\alpha_s/8M_*^3$	
DI1	$\chi \chi G_{\mu\nu} G^{\mu\nu}$	$\alpha_s/4M_*$	M8	GG	$i\alpha_s/8M_*^3$	
D12 D13	$\chi \gamma^{\nu} \chi G_{\mu\nu} G^{\mu\nu}$	$i\alpha_s/4M_*$	M9	GĞ	$\alpha_s/8M_*^3$	
D13 D14	$\bar{\chi}\gamma^5\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$\alpha_s/4M_*^3$	M1	0 <i>G</i> Ğ	$i\alpha_s/8M_*^3$	
	Real scalar, 1008.1783			Complex scalar.	1008.1783	
R 1	$\chi^2 \bar{q} q$	$m_a/2M_*^2$	C1	eemprex sealar,		100
R2	$\chi^2 \bar{q} \gamma^5 q$	$im_a/2M_*^2$		$\chi'\chi q q$		m_q/M_*
R3	$\chi^2 G_{\mu\nu} G^{\mu\nu}$	$\alpha_s/8M_*^2$	C2 C2	$\chi'\chi q\gamma$	<i>q</i>	m_q/M_*
R4	$\chi^2 G_{\mu u} \tilde{G}^{\mu u}$	$i\alpha_s/8M_*^2$	C3	$\chi^{\dagger} \sigma_{\mu} \chi q \gamma$	4050	$1/M_{*}$ $1/M^{2}$
			C5	$\chi^{+}\sigma_{\mu}\chi q\gamma$	γ <i>4</i> 3μν	α / M^2
			C6	$\chi^{\dagger}\chi G_{\mu\nu}$	ς. ζµν	$i\alpha_s/4M_*$
	Used in this razor analysis					

X + Missing Transverse Energy

Norraphat SRIMANOBHAS | SUSY2015

Jets and Razor variables

At least 2 AK5 jets with $P_T > 80$ GeV and |eta| < 2.4.

Force events to be dijet+MET topology, two megajets are formed from reconstructed jets with $P_T > 40$ GeV and |eta| < 2.4.

Reject if |deltaPhi| between 2 megajets > 2.5.

Use momenta of two megajets to compute razor variables,

$$\begin{array}{lll} M_R &\equiv& \sqrt{(|\vec{p}_{J_1}|+|\vec{p}_{J_2}|)^2-(p_z^{J_1}+p_z^{J_2})^2} \ , \\ R &\equiv& \frac{M_T^R}{M_R} \ , \end{array}$$

with

$$M_{T}^{R} \equiv \sqrt{\frac{E_{T}^{miss}(p_{T}^{J_{1}} + p_{T}^{J_{2}}) - \vec{E}_{T}^{miss} \cdot (\vec{p}_{T}^{J_{1}} + \vec{p}_{T}^{J_{2}})}{2}}$$

• Events with M_R >200 GeV, and R^2 > 0.5 are retained for the analysis.

Razor: motivations

Phys. Rev. D 86, 015010

- Parked data was used with corresponding integrated luminosity 18.8 fb⁻¹.
- Two jets are reconstructed at LI in the central path.
- At the HLT, at least two jets with $P_T > 64$ GeV are considered.
 - $R^2 > 0.09$ and $R^2 \times M_R > 45$ GeV are considered.

M_R Range (GeV)	200 - 300	300 - 400	400 - 3500
Trigger Efficiency	$91.1\pm^{1.5}_{1.7}$	$90.7\pm^{2.3}_{2.9}$	$94.4\pm^{2.4}_{3.6}$

Trigger efficiencies for different M_R regions

Sample	b-tagging selection	M_R selection		
	no CSV loose jet	$200 < M_R \le 300 \text{ GeV} (VL)$		
0μ 1 μ and 2μ		$300 < M_R \le 400 \text{ GeV} (L)$		
0μ , 1μ , and 2μ		$400 < M_R \le 600 \text{ GeV} (H)$		
		$M_{\rm R} > 600 {\rm GeV} ({\rm VH})$		
$0\mu { m bb}$	$\geq 2 \text{ CSV tight jets}$			
$0\mu \mathrm{b}$	=1 CSV tight jets			
$1 \mu \mathrm{b}$	> 1 CSV tight jots	$M_R > 200 \text{ GeV}$		
$2\mu \mathrm{b}$	≥ 1000 ugint jets			
$Z(\mu\mu)b$	$\geq 1 \text{ CSV loose jets}$			

0-Tag: Background estimation

0-Tag: Data-vs-SM predictions

Events

10⁴

10³

10²

10

2.5 2 1.5

0.5

Events 10⁶

10⁴

10³

10²

10

10⁻¹

2.5

2 1.5

0.5

0.5

0.6

Data/MC

1

8.5

0.6

CMS

Data/MC

Ē

0-Tag: Interpretation in EFT framework

To translate upper limit to lower limit of the cutoff scale, and DM-Nucleon cross section,

Axial-vector operator spin-dependent (SD) $(\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{q}\gamma^{\mu}\gamma_{5}q)$ Vector operator spin independent (SI) $\mathcal{O}_V = \frac{(\bar{\chi}\gamma_\mu\chi)(\bar{q}\gamma^\mu q)}{\Lambda^2}$

$$\mathcal{O}_{AV} = \frac{(\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{q}\gamma^{\mu}\gamma_{5}q)}{\Lambda^{2}}$$

$$\Lambda_{LL} = \Lambda_{GEN} \left(\frac{\sigma_{GEN}}{\sigma_{UL}}\right)^{1/4}$$

$$\sigma^{SD}_{N-\chi} = 0.33 rac{\mu^2}{\pi \Lambda^4_{LL}}$$
 $\sigma^{SI}_{N-\chi} = 9 rac{\mu^2}{\pi \Lambda^4}$

Validity of the EFT approach

Kinematics for s Channel

$$\begin{aligned} Q_{tr} &< M \\ g_q, g_\chi &< 4\pi \\ Q_{tr} &< \sqrt{g_q g_\chi} \Lambda < 4\pi \Lambda \end{aligned}$$

• Effect of the EFT cutoff, 1307.2253

$$R_{\Lambda} = \frac{\int d\mathbf{R}^2 \int d\mathbf{M}_{\mathbf{R}} \left. \frac{d^2\sigma}{d\mathbf{R}^2 d\mathbf{M}_{\mathbf{R}}} \right|_{Q_{tr} < \mathbf{g}_{eff}\Lambda}}{\int d\mathbf{R}^2 \int d\mathbf{M}_{\mathbf{R}} \frac{d^2\sigma}{d\mathbf{R}^2 d\mathbf{M}_{\mathbf{R}}}}$$

0-Tag: Interpretation in EFT framework

Norraphat SRIMANOBHAS | SUSY2015

- A method is similar to the no b-Tag.
- Background is dominated by ttbar events, and V+Jets is subleading.
- ttbar events in the 0-muon+b-Tag sample can be computed as

$$n(t\bar{t})_i^{0\mu b} = (n(t\bar{t})_i^{2\mu b} - N_i^{Z(\ell\ell) + jets, 2\mu b} - N_i^{W + jets, 2\mu b}) \frac{N(t\bar{t})_i^{0\mu b}}{N(t\bar{t})_i^{2\mu b}}$$

W(lv)+Jets and Z(vv)+Jets are predicted using the Z(mumu)b

b-Tag: Data-vs-SM predictions

Sample	$ m Z(uar{ u})+ m jets$	$W(\ell u)+jets$	$Z(\ell\ell)+jets$	$t\overline{t}$	Predicted	Predicted	Observed
					(simulation)	(data driven)	
$0\mu { m bb}$	44 ± 3	14 ± 2	0.2 ± 0.1	204 ± 4	262 ± 5	271 ± 37	247
$0\mu \mathrm{b}$	417 ± 8	216 ± 7	2.4 ± 0.4	1480 ± 12	2116 ± 16	2231 ± 281	2282

b-Tag: Interpretation in EFT framework

- Presented the multijet+MET analysis with/without b-tagged jets at the CMS.
- No excess of events over the estimated SM background.
- Limits to EFT DM models have been obtained, and translate into dark matter-nucleon cross section.
- Looking forward for 13 TeV results.