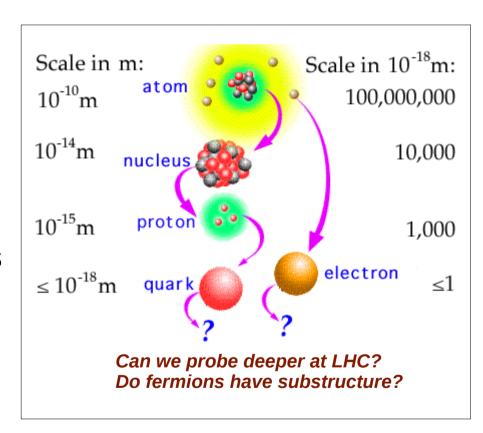

Search for Excited Leptons at CMS

SUSY 2015, Lake Tahoe, California Aug 23-29, 2015

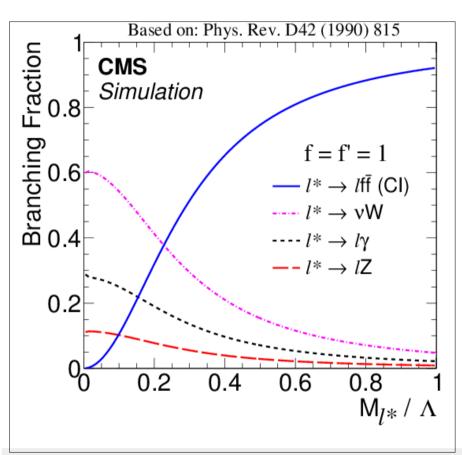
Lovedeep Kaur Saini (*), Kansas State University

(*) On behalf of CMS collaboration



Motivation

Compositeness Model


- Possible explanation of mass hierarchy in quarks and leptons
- Quarks and leptons may not be fundamental particles
 - Can be bound states of 3 fermions or a fermion and a boson
 - the supposed constituents called "preons"
- Excited states of leptons (ℓ*)
 - a clear signature of composite structure

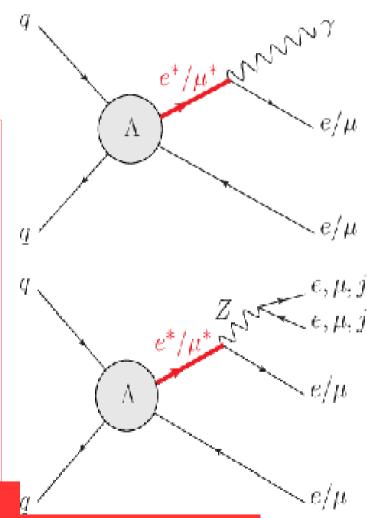
Production and Decay Modes

• Production:

- Single ℓ* production via contact interaction
 - pp $\rightarrow \ell\ell^*$, where $\ell = e$, μ
- Decay:
 - Contact interaction
 - ℓ * → ℓ ff, f is fermion
 - Gauge interactions
 - Radiative decays, ℓ* → ℓy
 - Charged current decays, ℓ* → νW
 - Neutral current decays, ¹/₂ → ¹/₂

f, f' are couplings between SM leptons and excited leptons via gauge interactions

Results based on CMS EXO-14-015, interpreted for f = f' = 1 and f = -f' = 1


Various Search Channels

- ℓℓ* → ℓℓγ
 - High branching ratio
 - Vanishes for f = -f'
- $\ell\ell\star$ \rightarrow $\ell\ell Z$
 - Highly boosted Z-bosons
 - Z → jj,
 - highly collimated jets, reconstructed as single "fat-jet"
 - rely on jet substructure techniques
 - Z → {ℓ,
 - leptons collinear, need relaxed isolation

For first time at LHC from CMS!

Helps to probe f = -f' phase space, unexplored by previous seraches!

Results based on CMS EXO-14-015

Physics Objects

Leptons

- $2\ell 2j$, $\ell\ell \gamma$: Two same flavour isolated leptons within detector accepetance and $p_T > 35$ GeV
- 4 ℓ : Four isolated leptons within detector acceptance and $p_T > 25$ GeV

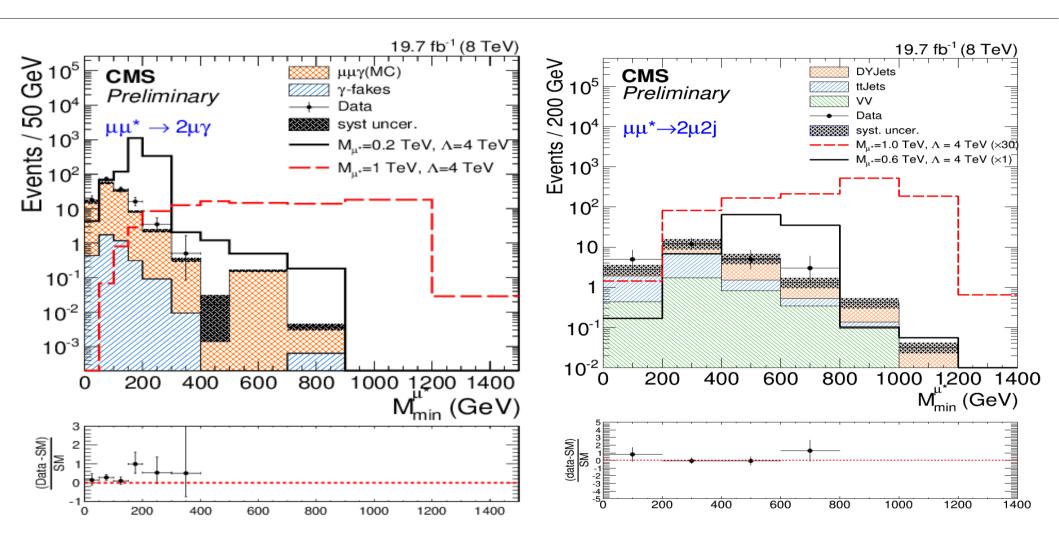
Photons

• $\ell\ell y$: one isolated high Et photon within central region of emcalorimeter and $p_T > 35$ GeV

Jets

- $2\ell 2j$: $p_T > 200$ GeV and in detector acceptance
- Z-tagging:
 - "pruned" jet mass between 70 110 GeV, N-subjettiness (sum of angular distances of jet constituents to their nearest subjet axis) ratio < 0.5

Event Selection

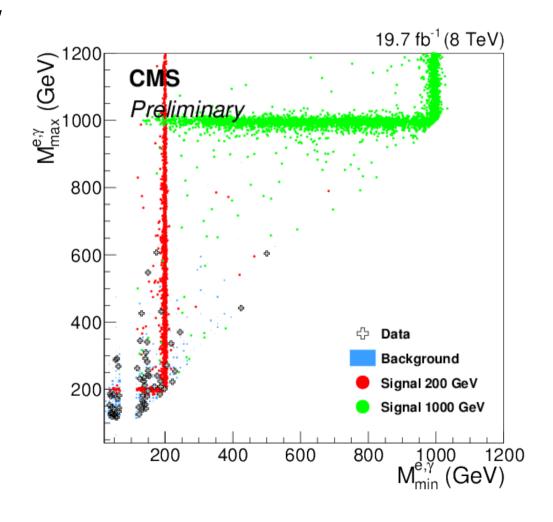

Z-veto

- M_{ll} > 106 GeV in lly and 4l channels
- M_{ℓℓ} > 200 GeV for 2ℓ2j channels
- Additional requirements for \(\ext{\ell} \psi \) channel
 - For eey channel, remove events with M_{ey} with ±25 GeV of Z-boson mass
 - For $\mu\mu\gamma$ channel, reject back-to-back cosmic muons by removing those with an angle above π -0.02
 - $\Delta R(lepton, \gamma) > 0.7$, reduce FSR contribution

Reconstructing ℓ*

- Two leptons in final state along with reconstructed Z-boson or photon
 - Two possible lepton-boson combination
- So, two invariant masses: M_X^{Max} and M_X^{Min}

Invariant mass distribution (M_x^{Min})



 ${\rm M_X^{\it Max}}$ vs ${\rm M_X^{\it Min}}$ in 2D-plane, signal forms inverted "L" shape around considered ${\rm M_{\ell^*}}$

- see next slide

Final selection

- L-shape search window
 - discriminates efficiently against expected background
 - that tends to be at low invariant mass
 - High mass regions background free
 - Width depends on channel and M_{ℓ*}
 - Optimised w.r.t best expected limit

Sources of backgrounds

- ℓℓ* → ℓℓγ
 - Major: Zy, ~90% contribution
 - estimated by simulations
 - Reducible: having either fake electrons or fake photon
 - estimated using data
 - Electron fake rate
 - Photon fake rate
- ℓℓ* → 4ℓ
 - Major: ZZ, ~ 90% contribution
 - Other small contributions from Tribosons, top pair + X ($X = W/Z/\gamma$)
 - All estimated using simulations

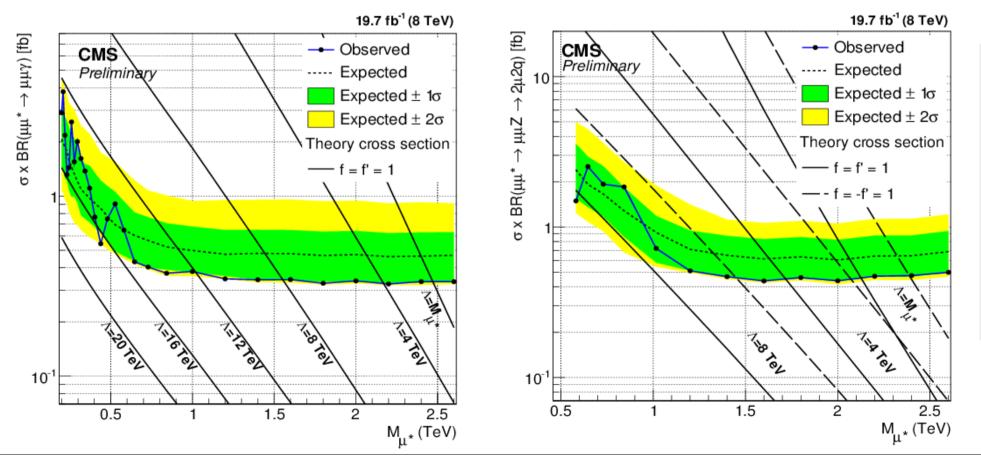
- ℓℓ* → 2ℓ2j
 - Major: DY+Jets, ttbar
 - Di-bosons, ~10% contribution
 - All estimated from data using ABCD method
 - relies on two independent variables, M_{ℓℓ} and Nsubjettiness ratio
 - Four disjoint regions in their 2D plane; A (signal rich), B/C/D (control regions)

• $N_A = N_B/N_D * N_C$ A C E B DN-subjettiness ratio

Systematic Uncertainties

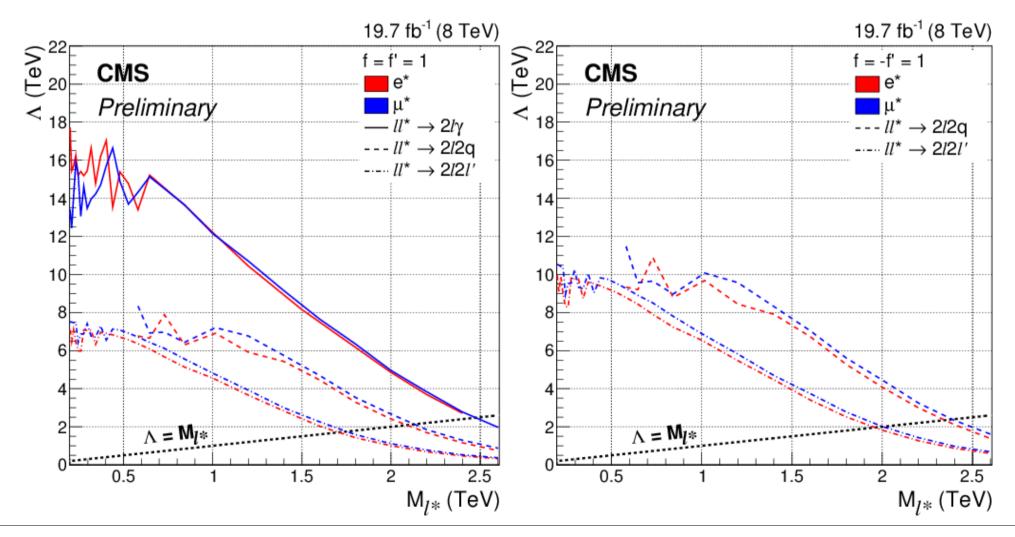
ℓℓ* → ℓℓγ

- Dominant uncertainty: PDF's, renormalization and factorization scale in background processes: ~10%
- Pileup simulation ~5%
- Data driven background estimates
 ~50% for fake photons, but impact
 ~4% on yields being small
 contribution of this background


- ℓℓ* → 2ℓ2j
 - Data driven background estimation ~30% due to signal contamination in control regions
 - Difference between Ztagging efficiency in data and simulation ~10%

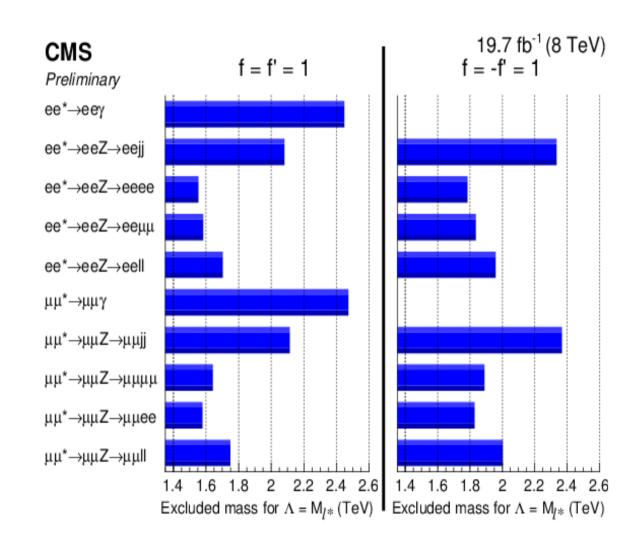
- ℓℓ* → 4ℓ
 - Dominant uncertainty: ZZ background cross-section ~15%
 - Electron energy scale: impact on background yield ~12%
 - Electron selection efficiency ~6%, muon efficiencies ~3%

All other theory and experiment related uncertainties are taken care in various channels, but have small impact on yields


Limits on Cross-section * BR

- Data agree with SM expectation, no evidence for new physics
- 95% CL upper limit on ℓ* production cross-section times BR has been set
 - using a single bin counting method using Bayesian approach

Limits on Compositeness Scale A


For the case of SM-like couplings (left) low masses, Λ upto 16TeV can be excluded

Mass limits for $M_{\ell^*} = \Lambda$

ffy:

- maximum sensitivity
- excludes $M_{\ell^*} < 2.45$ (2.48) TeV for $e(\mu)$
- Improves existing ATLAS limit
 - excludes M_{I*} < 2.2 TeV
- \(\ell Z\):
 - sensitive for f= -f'
 - 2l2j most sensitive among other channels
 - excludes $M_{\ell^*} < 2.35$ (2.38) TeV for $e(\mu)$

Summary

- A search for excited leptons in various channels performed using the full 19.7 fb-1 of Run-1 data collected by CMS.
- None of the search channels shows a sign of new physics.
- Exclusion limits are set on the compositeness scale as a function of $M_{\ell^{\star}}$
 - Mass exclusion limits are provided for the case when $M_{\ell^*} = \Lambda$
- ℓℓ* → ℓℓγ provides best exclusion limit for mass of e* (μ*) of 2.45
 (2.48) TeV
- For the first time at hadron colliders, ℓ* decays via Z-boson radiation are studied
 - Sensitive for the case when the couplings to SM fermions and excited fermions are opposite (f = -f').
 - Observed 95% exclusion limits reach upto 2.35 (2.38) TeV for e* (µ*)