SUSY 2015 - Flavor Violation Theory \& Experiment

$$
\underset{\substack{\text { Charming Penguins } \\ \text { strike back again? }}}{B \rightarrow K^{*} \mu \mu}
$$

M.Ciuchini, M.Fedele, E.Franco, S.Mishima, A.Paul, L.Silvestrini, M.V. (in preparation)


Lake Tahoe (USA), August 242015

## M. Valli



Supported by:

## The $P_{5}^{\prime}$ anomaly


$3 \mathrm{fb}^{-1}$
S. Descotes-Genon, L. Hofer, J. Matias, and J.Virto JHEP 1412 (2014) I25, arXiv:I407.8526

## B to $\mathrm{K}^{*} \mu^{+} \mu^{-}$generalities

In the Standard Model (SM), FCNCs arise only @ loop-level
$\rightarrow$ NP can sizably contribute to these rare processes

## Angular Analysis

$\theta_{\mathrm{K}}$ in $\mathrm{K}^{*}$ rest frame $\theta_{1}$ in dilepton CM frame $\phi$ boost-invariant w.r.t. z-axis
$\mathrm{q}^{2} \equiv$ invariant dilepton mass

$$
\begin{aligned}
& \frac{d^{(4)} \Gamma}{d q^{2} d\left(\cos \theta_{l}\right) d\left(\cos \theta_{k}\right) d \phi}=\frac{9}{32 \pi} \\
& \times\left(I_{1}^{s} \sin ^{2} \theta_{k}+I_{1}^{c} \cos ^{2} \theta_{k}+\left(I_{2}^{s} \sin ^{2} \theta_{k}+I_{2}^{c} \cos ^{2} \theta_{k}\right) \cos 2 \theta_{l}\right. \\
& \quad+I_{3} \sin ^{2} \theta_{k} \sin ^{2} \theta_{l} \cos 2 \phi+I_{4} \sin 2 \theta_{k} \sin 2 \theta_{l} \cos \phi \\
& \quad+I_{5} \sin 2 \theta_{k} \sin \theta_{l} \cos \phi+\left(I_{6}^{s} \sin \theta_{k}+I_{6}^{c} \cos ^{2} \theta_{K}\right) \cos \theta_{l} \\
& \quad+I_{7} \sin 2 \theta_{k} \sin \theta_{l} \sin \phi+I_{8} \sin 2 \theta_{k} \sin 2 \theta_{l} \sin \phi \\
& \left.\quad+I_{9} \sin ^{2} \theta_{k} \sin ^{2} \theta_{l} \sin 2 \phi\right)
\end{aligned}
$$



$$
\begin{gathered}
S_{i}=\left(I_{i}^{(s, c)}+\bar{I}_{i}^{(s, c)}\right) / \Gamma^{\prime} \\
\left(2 \Gamma^{\prime} \equiv d \Gamma / d q^{2}+d \bar{\Gamma} / d q^{2}\right)
\end{gathered}
$$

8 CP-AVERAGED ObSERVABLES

$$
F_{L}, A_{F B}, S_{3,4,5,7,8,9}
$$

State-of-the art experimental cuts and event
reconstruction allow an angular analysis in bins of $q^{2}:\left\langle I_{i}^{(c, s)}\right\rangle=\int_{q_{\text {min }}^{2}}^{q_{\max }^{2}} d q^{2} I_{i}^{(c, s)}\left(q^{2}\right)$ 3 distinct regions in the dilepton mass spectrum:


Experimental binning from latest data release, LHCb-CONF-2015-002:

$$
\left[\begin{array}{l}
{[0.1,0.98],[1.1,2.5],[2.5,4.0]} \\
{[4.0,6.0],[6.0,8.0],[1.1,6.0]}
\end{array}\right.
$$

[15.0, 17.0], [17.0, 19.0], [15.0, 19.0]

State-of-the art experimental cuts and event reconstruction allow an angular analysis in bins of $q^{2}:\left\langle I_{i}^{(c, s)}\right\rangle=\int_{q_{\text {min }}^{2}}^{q_{\max }^{2}} d q^{2} I_{i}^{(c, s)}\left(q^{2}\right)$

## 3 distinct regions in the dilepton mass spectrum:



Experimental binning from latest data release, LHCb-CONF-2015-002:

$$
\left[\begin{array}{c}
{[0.1,0.98],[1.1,2.5],[2.5,4.0]} \\
{[4.0,6.0],[6.0,8.0],[1.1,6.0]}
\end{array}\right.
$$

## The decay in the Standard Model

B to $K^{*} \mu \mu$ decay belongs to $\mathrm{b} \rightarrow \mathrm{s}$ transitions

$$
\begin{aligned}
& Q_{1}^{q=u, c}=\left(\bar{s}_{L} \gamma_{\mu} T^{a} q_{L}\right)\left(\bar{q}_{L} \gamma^{\mu} T^{a} b_{L}\right) \\
& Q_{2}^{q=u, c}=\left(\bar{s}_{L} \gamma_{\mu} q_{L}\right)\left(\bar{q}_{L} \gamma^{\mu} b_{L}\right)
\end{aligned}
$$

$$
\mathcal{H}_{\mathrm{eff}}^{\Delta B=1}=\mathcal{H}_{\mathrm{eff}}^{\mathrm{had}}+\mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}}
$$

@ dimension 6, 10 operators

$$
P_{3}=\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right) \sum_{q}\left(\bar{q} \gamma^{\mu} q\right)
$$

$$
P_{4}=\left(\bar{s}_{L} \gamma_{\mu} T^{a} b_{L}\right) \sum_{q}\left(\bar{q} \gamma^{\mu} T^{a} q\right)
$$

$$
P_{5}=\left(\bar{s}_{L} \gamma_{\mu 1} \gamma_{\mu 2} \gamma_{\mu 3} b_{L}\right) \sum_{q}\left(\bar{q} \gamma^{\mu 1} \gamma^{\mu 2} \gamma^{\mu 3} q\right)
$$

$$
P_{6}=\left(\bar{s}_{L} \gamma_{\mu 1} \gamma_{\mu 2} \gamma_{\mu 3} T^{a} b_{L}\right) \sum_{q}\left(\bar{q} \gamma^{\mu 1} \gamma^{\mu 2} \gamma^{\mu 3} T^{a} q\right)
$$

$$
Q_{8 g}=\frac{g_{s}}{16 \pi^{2}} m_{b} \bar{s} \sigma_{\mu \nu} P_{R} G^{\mu \nu} b
$$

$$
Q_{7 \gamma}=\frac{e}{16 \pi^{2}} m_{b} \bar{s} \sigma_{\mu \nu} P_{R} F^{\mu \nu} b
$$

$$
Q_{9 V}=\frac{\alpha_{e m}}{4 \pi}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right)
$$

$$
Q_{10 A}=\frac{\alpha_{e m}}{4 \pi}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma^{5} \ell\right)
$$

## The decay in the Standard Model

$B$ to $K^{*} \mu \mu$ decay belongs to $b \rightarrow s$ transitions

$$
\begin{aligned}
& Q_{1}^{q=u, c}=\left(\bar{s}_{L} \gamma_{\mu} T^{a} q_{L}\right)\left(\bar{q}_{L} \gamma^{\mu} T^{a} b_{L}\right) \\
& Q_{2}^{q=u, c}=\left(\bar{s}_{L} \gamma_{\mu} q_{L}\right)\left(\bar{q}_{L} \gamma^{\mu} b_{L}\right) \\
& P_{3}=\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right) \sum_{q}\left(\bar{q} \gamma^{\mu} q\right) \\
& P_{4}=\left(\bar{s}_{L} \gamma_{\mu} T^{a} b_{L}\right) \sum_{q}\left(\bar{q} \gamma^{\mu} T^{a} q\right) \\
& P_{5}=\left(\bar{s}_{L} \gamma_{\mu 1} \gamma_{\mu 2} \gamma_{\mu 3} b_{L}\right) \sum_{q}\left(\bar{q} \gamma^{\mu 1} \gamma^{\mu 2} \gamma^{\mu 3} q\right) \\
& P_{6}=\left(\bar{s}_{L} \gamma_{\mu 1} \gamma_{\mu 2} \gamma_{\mu 3} T^{a} b_{L}\right) \sum_{q}\left(\bar{q} \gamma^{\mu 1} \gamma^{\mu 2} \gamma^{\mu 3} T^{a} q\right) \\
& Q_{8 g}=\frac{g_{s}}{16 \pi^{2}} m_{b} \bar{s} \sigma_{\mu \nu} P_{R} G^{\mu \nu} b
\end{aligned}
$$

$$
Q_{7 \gamma}=\frac{e}{16 \pi^{2}} m_{b} \bar{s} \sigma_{\mu \nu} P_{R} F^{\mu \nu} b
$$

$$
Q_{9 V}=\frac{\alpha_{e m}}{4 \pi}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right)
$$



$$
\mathcal{H}_{\mathrm{eff}}^{\Delta B=1}=\mathcal{H}_{\mathrm{eff}}^{\mathrm{had}}+\mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}}
$$

@ dimension 6, 10 operators
$Q_{10 A}=\frac{\alpha_{e m}}{4 \pi}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma^{5} \ell\right)$

## The decay in the Standard Model

B to $K^{*} \mu \mu$ decay belongs to $b \rightarrow s$ transitions

$$
\begin{aligned}
& Q_{1}^{q=u, c}=\left(\bar{s}_{L} \gamma_{\mu} T^{a} q_{L}\right)\left(\bar{q}_{L} \gamma^{\mu} T^{a} b_{L}\right) \\
& Q_{2}^{q=u, c}=\left(\bar{s}_{L} \gamma_{\mu} q_{L}\right)\left(\bar{q}_{L} \gamma^{\mu} b_{L}\right) \\
& P_{3}=\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right) \sum_{q}\left(\bar{q} \gamma^{\mu} q\right) \\
& P_{4}=\left(\bar{s}_{L} \gamma_{\mu} T^{a} b_{L}\right) \sum_{q}\left(\bar{q} \gamma^{\mu} T^{a} q\right) \\
& P_{5}=\left(\bar{s}_{L} \gamma_{\mu 1} \gamma_{\mu 2} \gamma_{\mu 3} b_{L}\right) \sum_{q}\left(\bar{q} \gamma^{\mu 1} \gamma^{\mu 2} \gamma^{\mu 3} q\right) \\
& P_{6}=\left(\bar{s}_{L} \gamma_{\mu 1} \gamma_{\mu 2} \gamma_{\mu 3} T^{a} b_{L}\right) \sum{ }_{q}\left(\bar{q} \gamma^{\mu 1} \gamma^{\mu 2} \gamma^{\mu 3} T^{a} q\right) \\
& Q_{8 g}=\frac{g_{s}}{16 \pi^{2}} m_{b} \bar{s} \sigma_{\mu \nu} P_{R} G^{\mu \nu} b
\end{aligned}
$$

$$
\mathcal{H}_{\mathrm{eff}}^{\Delta B=1}=\mathcal{H}_{\mathrm{eff}}^{\mathrm{had}}+\mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}}
$$

@ dimension 6, 10 operators

$$
Q_{7 \gamma}=\frac{e}{16 \pi^{2}} m_{b} \bar{s} \sigma_{\mu \nu} P_{R} F^{\mu \nu} b
$$

$$
Q_{9 V}=\frac{\alpha_{e m}}{4 \pi}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right)
$$

$$
Q_{10 A}=\frac{\alpha_{e m}}{4 \pi}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma^{5} \ell\right)
$$

## The decay in the Standard Model

B to $K^{*} \mu \mu$ decay belongs to $\mathrm{b} \rightarrow \mathrm{s}$ transitions

$$
\begin{aligned}
& Q_{1}^{q=u, c}=\left(\bar{s}_{L} \gamma_{\mu} T^{a} q_{L}\right)\left(\bar{q}_{L} \gamma^{\mu} T^{a} b_{L}\right) \\
& Q_{2}^{q=u, c}=\left(\bar{s}_{L} \gamma_{\mu} q_{L}\right)\left(\bar{q}_{L} \gamma^{\mu} b_{L}\right) \\
& P_{3}=\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right) \sum_{q}\left(\bar{q} \gamma^{\mu} q\right) \\
& P_{4}=\left(\bar{s}_{L} \gamma_{\mu} T^{a} b_{L}\right) \sum_{q}\left(\bar{q} \gamma^{\mu} T^{a} q\right) \\
& P_{5}=\left(\bar{s}_{L} \gamma_{\mu 1} \gamma_{\mu 2} \gamma_{\mu 3} b_{L}\right) \sum_{q}\left(\bar{q} \gamma^{\mu 1} \gamma^{\mu 2} \gamma^{\mu 3} q\right) \\
& P_{6}=\left(\bar{s}_{L} \gamma_{\mu 1} \gamma_{\mu 2} \gamma_{\mu 3} T^{a} b_{L}\right) \sum_{q}\left(\bar{q} \gamma^{\mu 1} \gamma^{\mu 2} \gamma^{\mu 3} T^{a} q\right) \\
& Q_{8 g}=\frac{g_{s}}{16 \pi^{2}} m_{b} \bar{s} \sigma_{\mu \nu} P_{R} G^{\mu \nu} b
\end{aligned}
$$

$$
\mathcal{H}_{\mathrm{eff}}^{\Delta B=1}=\mathcal{H}_{\mathrm{eff}}^{\mathrm{had}}+\mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}}
$$

@ dimension 6, 10 operators

$$
\mathcal{H}_{\mathrm{eff}}^{\Delta B=1} \sim \sum_{i}\left(C_{i}\right) \mathcal{O}_{i}
$$

Short-distance physics:

- 2-loop QCD matching
- 3-loop $10 \times 10$ ADM

Running from $\mathrm{m}_{\mathrm{w}}$ down to $\mathrm{mb}_{\mathrm{b}}$ :

$$
\begin{aligned}
& \mathrm{C}_{1}=-0.26, \mathrm{C}_{2}=1.01, \mathrm{C}_{7}=-0.3 \\
& \mathrm{C}_{8}=-0.17, \mathrm{C}_{9}=4.2 \mathrm{I}, \mathrm{C}_{10}=-4.1 \\
& \text { and all the rest }<0.0 \mathrm{I} .
\end{aligned}
$$

In the $\mathrm{SM},\langle M \ell \ell| \mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}}|\bar{B}\rangle$ corresponds to the following helicity amplitudes:

$$
\begin{aligned}
& H_{V}(\lambda) \propto C_{9} \tilde{V}_{L \lambda}+\frac{2 m_{b} m_{B}}{q^{2}} C_{7} \tilde{T}_{L \lambda} \\
& H_{A}(\lambda) \propto C_{10} \tilde{V}_{L \lambda} \\
& H_{P} \propto \frac{2 m_{l} m_{B}}{q^{2}} C_{10}\left(1+\frac{m_{s}}{m_{B}}\right) \widetilde{S}
\end{aligned} \quad(\lambda=0, \pm)
$$

The angular coefficients $I^{(c, s)}$ are functions of these amplitudes, as well as the CP averaged observables we are ultimately interested in.

For example,
$I_{1}^{c}=F\left(\frac{1}{2}\left(\left|H_{V}^{0}\right|^{2}+\left|H_{A}^{0}\right|^{2}\right)+\left|H_{P}^{0}\right|^{2}+\frac{2 m_{l}^{2}}{q^{2}}\left(\left|H_{V}^{0}\right|^{2}-\left|H_{A}^{0}\right|^{2}\right)\right)$,
$I_{1}^{s}=F\left(\frac{\beta^{2}+2}{8}\left(\left|H_{V}^{+}\right|^{2}+\left|H_{V}^{-}\right|^{2}+\left|H_{A}^{+}\right|^{2}+\left|H_{A}^{-}\right|^{2}\right)+\frac{m_{l}^{2}}{q^{2}}\left(\left|H_{V}^{+}\right|^{2}-\left|H_{V}^{-}\right|^{2}-\left|H_{A}^{+}\right|^{2}+\left|H_{A}^{-}\right|^{2}\right)\right)$
where:

$$
\begin{aligned}
F & =\frac{\lambda^{1 / 2} \beta q^{2}}{3 \times 2^{5} \pi^{3} m_{B}^{3}} \operatorname{BR}\left(K^{*} \rightarrow K \pi\right), \quad \beta=\sqrt{1-\frac{4 m_{l}^{2}}{q^{2}}} \\
\lambda & =m_{B}^{4}+m_{K}^{4}+q^{4}-2\left(m_{B}^{2} m_{K^{*}}^{2}+m_{B}^{2} q^{2}+m_{K}^{2} q^{2}\right) .
\end{aligned}
$$

In the $\mathrm{SM},\langle M \ell \ell| \mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}}|\bar{B}\rangle$ corresponds to the following helicity amplitudes:

$$
\begin{aligned}
& H_{V}(\lambda) \propto C_{9} \widetilde{V}_{L \lambda}+\frac{2 m_{b} m_{B}}{q^{2}} C_{-}-\overparen{T}_{L \lambda} \\
& H_{A}(\lambda) \propto C_{10}\left(\overparen{V}_{L \lambda}\right. \\
& H_{P} \propto \frac{2 m_{l} m_{B}}{q^{2}} C_{10}\left(1+\frac{m_{s}}{m_{B}}\right) \widetilde{S}
\end{aligned} \quad(\lambda=0, \pm)
$$

The angular coefficients $I^{(c, s)}$ are functions of these amplitudes, as well as the CP averaged observables we are ultimately interested in.
$\rightarrow 7 q^{2}$-dependent form factors to be computed
At low $\mathrm{q}^{2}$, most recent determination in Bharucha, Straub, Zwicky (I503.05534), through QCD Sum Rules on the Light-Cone (LCSR).

$$
\begin{aligned}
& F^{(i)}\left(q^{2}\right)=\sum_{k} \alpha_{k}^{(i)} \frac{\left[z\left(q^{2}\right)-z(0)\right]^{k}}{1-\left(q / m_{R}^{(i)}\right)^{2}}
\end{aligned} \begin{aligned}
& z(t)=\frac{\sqrt{t_{+}-t}-\sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-t}+\sqrt{t_{+}-t_{0}}} \\
& \text { where } t_{ \pm}=\left(m_{B} \pm m_{K^{\prime}}\right)^{2} \text { and } \\
& t_{0}=t_{+}\left(1-\sqrt{1-t_{-} / t_{+}}\right)
\end{aligned}
$$



What about the hadronic part of the effective Hamiltonian?
It can contribute to $H_{V}(\lambda)$ through the insertion of E.M. currents!

$$
H_{V}(\lambda) \propto C_{9} \tilde{V}_{L \lambda}+\frac{2 m_{b} m_{B}}{q^{2}} C_{7} \tilde{T}_{L \lambda}-\frac{16 \pi^{2} m_{B}^{2}}{q^{2}} h_{\lambda}
$$

where the above hadronic contribution reads:

$$
h_{\lambda}\left(q^{2}\right)=\frac{\epsilon_{\mu}^{*}(\lambda)}{m_{B}^{2}} \int d^{4} x e^{i q x}\left\langle\bar{K}^{*}\right| T\left\{j_{\mathrm{em}}^{\mu}(x) \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}}(0)\right\}|\bar{B}\rangle
$$



This correlator is the weakest part of the theoretical prediction.

What about the hadronic part of the effective Hamiltonian?
It can contribute to $H_{V}(\lambda)$ through the insertion of E.M. currents!

$$
H_{V}(\lambda) \propto C_{9} \tilde{V}_{L \lambda}+\frac{2 m_{b} m_{B}}{q^{2}} C_{7} \tilde{T}_{L \lambda}-\frac{16 \pi^{2} m_{B}^{2}}{q^{2}} h_{\lambda}
$$

where the above hadronic contribution reads:

$$
h_{\lambda}\left(q^{2}\right)=\frac{\epsilon_{\mu}^{*}(\lambda)}{m_{B}^{2}} \int d^{4} x e^{i q x}\left\langle\bar{K}^{*}\right| T\left\{j_{\mathrm{em}}^{\mu}(x) \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}}(0)\right\}|\bar{B}\rangle
$$



This correlator is the weakest part of the theoretical prediction.
A big effort has been done by Khodjamirian et al., 1006.4945, where the charm-loop + single soft gluon emission was computed.


DRAWBACKS:

- still partial estimate of the effect, valid for $q^{2} \leqslant 1 \mathrm{GeV}^{2}$ only
- multiple soft gluon emission suppressed as far as $q^{2} \ll 4 \mathrm{~m}^{2}{ }_{c}$


## H巴Pfit: Our weapon of choice


the HEPfit group:
@present

L.Silvestrini

M.Ciuchini
S.Mishima

## +7 postdocs


M.Pierini

E.Franco

HEPfit is a framework for Do not miss in the SM and Beyond, cons Do not (Flavour, EWPT, Higgs) It is a public code written GSL, Boost, ROOT and Bayes
talk of A.Pall! 1 PI parallelization, with pos toolkit (BAT) dependencies.

HEPfit will be officially released with a user friendly cross-platform CMake + a detailed documentation of the code (technical paper + Doxygen!)

First official release soon!
Developer version already available @ https://github.com/silvest/HEPfit

## Our Analysis in the low $q^{2}$ region

## MAIN THEORY INPUT:

For the form factors, LCSR state-of-the-art estimate in I503.05534:
\# parameters: $3 \times 7-2=19$ (with $19 \times 19$ correlation matrix)
Following Jager \& Camalich' I4, I4 I2.3 I83, we parametrized the non-factorizable hadronic contribution as:

$$
h_{\lambda}\left(q^{2}\right)=h_{\lambda}^{(0)}+h_{\lambda}^{(1)} q^{2}+h_{\lambda}^{(2)} q^{4},(\lambda=0, \pm)
$$

TO PROVIDEA MORE RELIABLE DESCRIPTION ABOVE FEW $\mathrm{GeV}^{2}$
\# parameters: $\quad 3 \times 3 \times 2=18$
to which we assigned a generous prior (all flatly distributed in $\pm 2 \times 10^{-4}$ ).

## EXPERIMENTAL INFO EXPLOITED:

## LHCb-CONF-2015-002

$F_{L}, A_{F B}, S_{3,4,5,7,8,9}$
$8 \times 6=48$ (with $8 \times 8$ correlation matrix per bin)
$\mathcal{B}\left(B \rightarrow K^{*} \mu \mu\right) \quad \mid \times 4->52 \quad, \quad \mathcal{B}\left(B \rightarrow K^{*} \gamma\right)->53$

## full fit








Switching off one observable per time, one can fit again and look @


| $\boldsymbol{\operatorname { B i n } \mathbf { q } ^ { 2 }}\left[\mathrm{GeV}^{2} / \mathrm{c}^{4}\right]$ | $\mathbf{A}_{\mathbf{F B}}$ | $\mathbf{F}_{\mathbf{L}}$ | $\mathbf{S}_{\mathbf{3}}$ | $\mathbf{S}_{\mathbf{4}}$ | $\mathbf{S}_{\mathbf{5}}$ | $\mathbf{S}_{\mathbf{7}}$ | $\mathbf{S}_{\mathbf{8}}$ | $\mathbf{S}_{\mathbf{9}}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $[0.1,0.98]$ | 1.9 | -0.9 | 0.0 | 0.7 | -1.2 | 0.1 | 0.9 | -1.2 |
| $[1.1,2.5]$ | -0.6 | -0.9 | -0.8 | -0.3 | 0.7 | -2.0 | -0.8 | -1.3 |
| $[2.5,4]$ | -1.3 | 1.8 | 0.6 | -1.0 | 0.7 | 0.5 | 0.2 | -0.8 |
| $[4,6]$ | -0.6 | 0.5 | 1.1 | -1.1 | -0.4 | -0.1 | 1.7 | -0.5 |
| $[6,8]$ | 0.7 | 1.4 | 0.3 | -2.5 | -1.5 | -0.3 | -1.2 | 0.4 |
| $[1.1,6]$ | -1.3 | 0.6 | 0.9 | -1.0 | 0.4 | -0.8 | 0.5 | -0.7 |

No statistically significant deviation from the angular observables.
(the result concerning the branching ratios is good as well)

## Cleaness of the "clean" P's

Some peculiar ratios of observables have been proposed with the aim of exploiting possible form factor/hadronic uncertainty cancellations. (see Descotes-Genon et al.'I3 and ref. therein)

One example on top of some others:

$$
P_{5}^{\prime} \equiv \frac{S_{5}}{\sqrt{F_{L}\left(1-F_{L}\right)}} \begin{gathered}
\left(\mathrm{q}^{2} \gtrsim \mathrm{~m}^{2} \mu\right)
\end{gathered}
$$




Our data-blind analysis with large hadronic contributions clearly shows a large shift in both the central values + inflation of errors!

## Fit \& Prediction of $\mathrm{P}_{5}$


(computed from the helicity amplitudes, i.e. not from fit result of $S_{5}$ and $F_{L}$ )

(switching off $S_{5}$ and $F_{L}$ together)

## How to get the Anomaly



Data-blind estimation.
No "charm-loop effect".
(1 sigma band here entirely due to LCSR form factors uncertainties)


Fit with Khodjamirian et al. estimate imposed in the whole $q^{2}$ range $[0.98,8] \mathrm{GeV}^{2}$.

## Face to face with hadronic contributions

One can easily read the size of the hadronic contribution $h_{\lambda}$ as a shift in $C_{9}$.
Eventually, to compare with the literature:

$$
\tilde{g} \equiv \Delta C_{9}^{\text {(non pert.) }} /\left(2 C_{1}\right)
$$

hadronic contribution extracted is compatible with theory estimate order of magnitude for $\mathrm{q}^{2} \lesssim \mathrm{IGeV}{ }^{2}$ and grows for larger $\mathrm{q}^{2}$ towards charm resonances ... it goes as expected!


DISCLAIMER:
Generic NP contribution in a Wilson coefficient would not bring any $q^{2}$ dependence.



## ANOMALY

```
anomaly |o'nom(o)li|
noun (pl.anomalies)
: something that deviates from what is standard, normal, or expected
: there are a number of anomalies in the present system
```

Hadronic (charm) effects can sizably affect your prediction.
This is what one could expect to find in B to $\mathrm{K} * 11$. That is what we were able to extract from available data.

At present, no anomaly can be possibly claimed.


