SUSY 2015 - Flavor Violation Theory & Experiment

Charming Penguins strike back again?

M.Ciuchini, M.Fedele, E.Franco, S.Mishima, A.Paul, L.Silvestrini, M.V. (in preparation)

INFN M. Valli

Supported by:

Lake Tahoe (USA), August 24 2015

The P's anomaly

S. Descotes-Genon, L. Hofer, J. Matias, and J. Virto JHEP 1412 (2014) 125, arXiv:1407.8526

B to $K^*\mu^+\mu^-$ generalities

In the Standard Model (SM), FCNCs arise only @ loop-level

NP can sizably contribute to these rare processes

Angular Analysis

 θ_K in K^* rest frame

 θ_l in dilepton CM frame

φ boost-invariant w.r.t. z-axis

 $q^2 \equiv invariant dilepton mass$

$$\frac{d^{(4)}\Gamma}{dq^2\,d(\cos\theta_l)d(\cos\theta_k)d\phi} = \frac{9}{32\,\pi}$$

$$\times \left(I_1^s \sin^2 \theta_k + I_1^c \cos^2 \theta_k + (I_2^s \sin^2 \theta_k + I_2^c \cos^2 \theta_k) \cos 2\theta_l \right.$$

$$+ I_3 \sin^2 \theta_k \sin^2 \theta_l \cos 2\phi + I_4 \sin 2\theta_k \sin 2\theta_l \cos \phi$$

$$+ I_5 \sin 2\theta_k \sin \theta_l \cos \phi + (I_6^s \sin^2 \theta_k + I_6^c \cos^2 \theta_K) \cos \theta_l$$

$$+ I_7 \sin 2\theta_k \sin \theta_l \sin \phi + I_8 \sin 2\theta_k \sin 2\theta_l \sin \phi$$

$$+ I_9 \sin^2 \theta_k \sin^2 \theta_l \sin 2\phi \right)$$

$$S_i = \left(I_i^{(s,c)} + \bar{I}_i^{(s,c)}\right) / \Gamma'$$
$$\left(2\Gamma' \equiv d\Gamma/dq^2 + d\bar{\Gamma}/dq^2\right)$$

8 CP-AVERAGED OBSERVABLES

$$F_L, A_{FB}, S_{3,4,5,7,8,9}$$

State-of-the art experimental cuts and event reconstruction allow an angular analysis in bins of q2: $\langle I_i^{(c,s)} \rangle = \int_{q^2}^{q^2_{max}} dq^2 \ I_i^{(c,s)}(q^2)$

3 distinct regions in the dilepton mass spectrum:

Experimental binning from latest data release, LHCb-CONF-2015-002:

[0.1, 0.98], [1.1, 2.5], [2.5, 4.0] [4.0, 6.0], [6.0, 8.0], [1.1,6.0] [15.0, 17.0],[17.0, 19.0], [15.0, 19.0]

[GeV²]

State-of-the art experimental cuts and event reconstruction allow an angular analysis in bins of q²: $\langle I_i^{(c,s)} \rangle = \int_{q_{min}^2}^{q_{max}^2} dq^2 \ I_i^{(c,s)}(q^2)$

3 distinct regions in the dilepton mass spectrum:

Experimental binning from latest data release, LHCb-CONF-2015-002:

[0.1, 0.98], [1.1, 2.5], [2.5, 4.0**]** [4.0, 6.0], [6.0, 8.0], [1.1,6.0] [15.0, 17.0], [17.0, 19.0], [15.0, 19.0]

[GeV²]

B to $K^* \mu \mu$ decay belongs to $b \rightarrow s$ transitions

$$Q_{1}^{q=u,c} = (\bar{s}_{L}\gamma_{\mu}T^{a}q_{L})(\bar{q}_{L}\gamma^{\mu}T^{a}b_{L})$$

$$Q_{2}^{q=u,c} = (\bar{s}_{L}\gamma_{\mu}q_{L})(\bar{q}_{L}\gamma^{\mu}b_{L})$$

$$P_{3} = (\bar{s}_{L}\gamma_{\mu}b_{L})\sum_{q}(\bar{q}\gamma^{\mu}q)$$

$$P_{4} = (\bar{s}_{L}\gamma_{\mu}T^{a}b_{L})\sum_{q}(\bar{q}\gamma^{\mu}T^{a}q)$$

$$P_{5} = (\bar{s}_{L}\gamma_{\mu1}\gamma_{\mu2}\gamma_{\mu3}b_{L})\sum_{q}(\bar{q}\gamma^{\mu1}\gamma^{\mu2}\gamma^{\mu3}q)$$

$$P_{6} = (\bar{s}_{L}\gamma_{\mu1}\gamma_{\mu2}\gamma_{\mu3}T^{a}b_{L})\sum_{q}(\bar{q}\gamma^{\mu1}\gamma^{\mu2}\gamma^{\mu3}T^{a}q)$$

$$Q_{8g} = \frac{g_{s}}{16\pi^{2}}m_{b}\bar{s}\sigma_{\mu\nu}P_{R}G^{\mu\nu}b$$

$$Q_{7\gamma} = \frac{e}{16\pi^{2}}m_{b}\bar{s}\sigma_{\mu\nu}P_{R}F^{\mu\nu}b$$

$$Q_{9V} = \frac{\alpha_{em}}{4\pi}(\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\ell)$$

$$Q_{10A} = \frac{\alpha_{em}}{4\pi}(\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma^{5}\ell)$$

$$\mathcal{H}_{\text{eff}}^{\Delta B=1} = \mathcal{H}_{\text{eff}}^{\text{had}} + \mathcal{H}_{\text{eff}}^{\text{sl}}$$

@ dimension 6, 10 operators

B to $K^* \mu \mu$ decay belongs to $b \rightarrow s$ transitions

$$Q_1^{q=u,c} = (\bar{s}_L \gamma_\mu T^a q_L)(\bar{q}_L \gamma^\mu T^a b_L)$$

$$Q_2^{q=u,c} = (\bar{s}_L \gamma_\mu q_L)(\bar{q}_L \gamma^\mu b_L)$$

$$P_3 = (\bar{s}_L \gamma_\mu b_L) \sum_{q} (\bar{q} \gamma^\mu q)$$

$$P_4 = (\bar{s}_L \gamma_\mu T^a b_L) \sum_{q} (\bar{q} \gamma^\mu T^a q)$$

$$P_5 = (\bar{s}_L \gamma_{\mu 1} \gamma_{\mu 2} \gamma_{\mu 3} b_L) \sum_{q} (\bar{q} \gamma^{\mu 1} \gamma^{\mu 2} \gamma^{\mu 3} q)$$

$$P_6 = (\bar{s}_L \gamma_{\mu 1} \gamma_{\mu 2} \gamma_{\mu 3} T^a b_L) \sum_{q} (\bar{q} \gamma^{\mu 1} \gamma^{\mu 2} \gamma^{\mu 3} T^a q)$$

$$Q_{8g} = \frac{g_s}{16\pi^2} m_b \bar{s} \sigma_{\mu\nu} P_R G^{\mu\nu} b$$

$$\mathcal{H}_{\text{eff}}^{\Delta B=1} = \mathcal{H}_{\text{eff}}^{\text{had}} + \mathcal{H}_{\text{eff}}^{\text{sl}}$$

@ dimension 6, 10 operators

$$Q_{7\gamma} = \frac{e}{16\pi^2} m_b \bar{s} \sigma_{\mu\nu} P_R F^{\mu\nu} b$$

$$Q_{9V} = \frac{\alpha_{em}}{4\pi} (\bar{s} \gamma_{\mu} P_L b) (\bar{\ell} \gamma^{\mu} \ell)$$

$$Q_{10A} = \frac{\alpha_{em}}{4\pi} (\bar{s} \gamma_{\mu} P_L b) (\bar{\ell} \gamma^{\mu} \gamma^5 \ell)$$

B to $K^* \mu \mu$ decay belongs to $b \rightarrow s$ transitions

$$Q_1^{q=u,c} = (\bar{s}_L \gamma_\mu T^a q_L)(\bar{q}_L \gamma^\mu T^a b_L)$$

$$Q_2^{q=u,c} = (\bar{s}_L \gamma_\mu q_L)(\bar{q}_L \gamma^\mu b_L)$$

$$P_3 = (\bar{s}_L \gamma_\mu b_L) \sum_{q} (\bar{q} \gamma^\mu q)$$

$$P_4 = (\bar{s}_L \gamma_\mu T^a b_L) \sum_{q} (\bar{q} \gamma^\mu T^a q)$$

$$P_5 = (\bar{s}_L \gamma_{\mu 1} \gamma_{\mu 2} \gamma_{\mu 3} b_L) \sum_{q} (\bar{q} \gamma^{\mu 1} \gamma^{\mu 2} \gamma^{\mu 3} q)$$

$$P_6 = (\bar{s}_L \gamma_{\mu 1} \gamma_{\mu 2} \gamma_{\mu 3} T^a b_L) \sum_{q} (\bar{q} \gamma^{\mu 1} \gamma^{\mu 2} \gamma^{\mu 3} T^a q)$$

$$Q_{8g} = \frac{g_s}{16\pi^2} m_b \bar{s} \sigma_{\mu\nu} P_R G^{\mu\nu} b$$

$$\mathcal{H}_{\mathrm{eff}}^{\Delta B=1} = \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}} + \mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}}$$

@ dimension 6, 10 operators

$$Q_{7\gamma} = \frac{e}{16\pi^2} m_b \bar{s} \sigma_{\mu\nu} P_R F^{\mu\nu} b$$

$$Q_{9V} = \frac{\alpha_{em}}{4\pi} (\bar{s} \gamma_{\mu} P_L b) (\bar{\ell} \gamma^{\mu} \ell)$$

$$Q_{10A} = \frac{\alpha_{em}}{4\pi} (\bar{s} \gamma_{\mu} P_L b) (\bar{\ell} \gamma^{\mu} \gamma^5 \ell)$$

B to $K^* \mu \mu$ decay belongs to $b \rightarrow s$ transitions

$$Q_{1}^{q=u,c} = (\bar{s}_{L}\gamma_{\mu}T^{a}q_{L})(\bar{q}_{L}\gamma^{\mu}T^{a}b_{L})$$

$$Q_{2}^{q=u,c} = (\bar{s}_{L}\gamma_{\mu}q_{L})(\bar{q}_{L}\gamma^{\mu}b_{L})$$

$$P_{3} = (\bar{s}_{L}\gamma_{\mu}b_{L})\sum_{q}(\bar{q}\gamma^{\mu}q)$$

$$P_{4} = (\bar{s}_{L}\gamma_{\mu}T^{a}b_{L})\sum_{q}(\bar{q}\gamma^{\mu}T^{a}q)$$

$$P_{5} = (\bar{s}_{L}\gamma_{\mu1}\gamma_{\mu2}\gamma_{\mu3}b_{L})\sum_{q}(\bar{q}\gamma^{\mu1}\gamma^{\mu2}\gamma^{\mu3}q)$$

$$P_{6} = (\bar{s}_{L}\gamma_{\mu1}\gamma_{\mu2}\gamma_{\mu3}T^{a}b_{L})\sum_{q}(\bar{q}\gamma^{\mu1}\gamma^{\mu2}\gamma^{\mu3}T^{a}q)$$

$$Q_{8g} = \frac{g_{s}}{16\pi^{2}}m_{b}\bar{s}\sigma_{\mu\nu}P_{R}G^{\mu\nu}b$$

$$\mathcal{H}_{\mathrm{eff}}^{\Delta B=1} = \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}} + \mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}}$$

@ dimension 6, 10 operators

$$\mathcal{H}_{ ext{eff}}^{\Delta B=1} \sim \sum_{i} \widehat{C_{i}} \, \mathcal{O}_{i}$$

Short-distance physics:

- 2-loop QCD matching
- 3-loop 10 x 10 ADM

$$Q_{7\gamma} = \frac{e}{16\pi^2} m_b \bar{s} \sigma_{\mu\nu} P_R F^{\mu\nu} b$$

$$Q_{9V} = \frac{\alpha_{em}}{4\pi} (\bar{s}\gamma_{\mu} P_L b) (\bar{\ell}\gamma^{\mu}\ell)$$

$$Q_{10A} = \frac{\alpha_{em}}{4\pi} (\bar{s}\gamma_{\mu} P_L b) (\bar{\ell}\gamma^{\mu}\gamma^5 \ell)$$

Running from mw down to mb:

$$C_1 = -0.26, C_2 = 1.01, C_7 = -0.3$$

$$C_8 = -0.17, C_9 = 4.21, C_{10} = -4.1$$

and all the rest < 0.01.

In the SM, $\langle M\,\ell\,\ell|\mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}}|\bar{B}
angle$ corresponds to the following helicity amplitudes:

$$H_{V}(\lambda) \propto C_{9} \tilde{V}_{L\lambda} + \frac{2m_{b}m_{B}}{q^{2}} C_{7} \tilde{T}_{L\lambda}$$

$$H_{A}(\lambda) \propto C_{10} \tilde{V}_{L\lambda} \qquad (\lambda = 0, \pm)$$

$$H_{P} \propto \frac{2m_{l}m_{B}}{q^{2}} C_{10} \left(1 + \frac{m_{s}}{m_{B}}\right) \tilde{S}$$

The angular coefficients $I^{(c,s)}$ are functions of these amplitudes, as well as the CP averaged observables we are ultimately interested in.

For example,

$$\begin{split} I_1^c &= F\left(\frac{1}{2}\left(|H_V^0|^2 + |H_A^0|^2\right) + |H_P^0|^2 + \frac{2m_l^2}{q^2}\left(|H_V^0|^2 - |H_A^0|^2\right)\right),\\ I_1^s &= F\left(\frac{\beta^2 + 2}{8}\left(|H_V^+|^2 + |H_V^-|^2 + |H_A^+|^2 + |H_A^-|^2\right) + \frac{m_l^2}{q^2}\left(|H_V^+|^2 - |H_V^-|^2 - |H_A^+|^2 + |H_A^-|^2\right)\right) \end{split}$$

where:
$$F=\frac{\lambda^{1/2}\beta q^2}{3\times 2^5\pi^3m_B^3}{\rm BR}(K^*\to K\pi),\quad \beta=\sqrt{1-\frac{4m_l^2}{q^2}},$$

$$\lambda=m_B^4+m_{^1\!\!K^*\!\!+}^4q^4-2(m_B^2m_{^{\!K^*\!\!+}}^2+m_B^2q^2+m_{^{\!K^*\!\!-}}^2q^2).$$

In the SM, $\langle M\,\ell\,\ell|\mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}}|\bar{B}
angle$ corresponds to the following helicity amplitudes:

$$H_{V}(\lambda) \propto C_{9} \tilde{V}_{L\lambda} + \frac{2m_{b}m_{B}}{q^{2}} C_{7} \tilde{T}_{L\lambda}$$

$$H_{A}(\lambda) \propto C_{10} \tilde{V}_{L\lambda} \qquad (\lambda = 0, \pm)$$

$$H_{P} \propto \frac{2m_{l}m_{B}}{q^{2}} C_{10} \left(1 + \frac{m_{s}}{m_{B}}\right) \tilde{S}$$

The angular coefficients $\mathbf{I}^{(c,s)}$ are functions of these amplitudes, as well as the CP averaged observables we are ultimately interested in.

7 q²-dependent form factors to be computed

At low q², most recent determination in Bharucha, Straub, Zwicky (1503.05534), through QCD Sum Rules on the Light-Cone (LCSR).

$$F^{(i)}(q^2) = \sum_k \alpha_k^{(i)} \frac{\left[z(q^2) - z(0)\right]^k}{1 - \left(q/m_R^{(i)}\right)^2} \qquad z(t) = \frac{\sqrt{t_+ - t} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - t} + \sqrt{t_+ - t_0}}$$
 where $t_\pm = (m_B \pm m_{K^*})^2$ and $t_0 = t_+ (1 - \sqrt{1 - t_-/t_+})$.

Low recoil region 1501.00367

VS LCSR

1503.05534 Large recoil region

What about the hadronic part of the effective Hamiltonian?

It can contribute to $H_V(\lambda)$ through the insertion of E.M. currents!

$$H_V(\lambda) \propto C_9 \tilde{V}_{L\lambda} + \frac{2m_b m_B}{q^2} C_7 \tilde{T}_{L\lambda} - \frac{16\pi^2 m_B^2}{q^2} h_{\lambda}$$

where the above hadronic contribution reads:

$$h_{\lambda}(q^2) = rac{\epsilon_{\mu}^*(\lambda)}{m_B^2} \int d^4x e^{iqx} \langle ar{K}^* | T\{j_{
m em}^{\mu}(x) {\cal H}_{
m eff}^{
m had}(0)\} | ar{B}
angle$$

 $\mathcal{O} \in \mathcal{H}^{\mathrm{had}}_{\mathrm{eff}}$

What about the hadronic part of the effective Hamiltonian?

It can contribute to $H_V(\lambda)$ through the insertion of E.M. currents!

$$H_V(\lambda) \propto C_9 \tilde{V}_{L\lambda} + \frac{2m_b m_B}{q^2} C_7 \tilde{T}_{L\lambda} - \frac{16\pi^2 m_B^2}{q^2} h_{\lambda}$$

where the above hadronic contribution reads:

$$h_{\lambda}(q^2) = rac{\epsilon_{\mu}^*(\lambda)}{m_B^2} \int d^4x e^{iqx} \langle ar{K}^* | T\{j_{
m em}^{\mu}(x) \mathcal{H}_{
m eff}^{
m had}(0)\} | ar{B}
angle$$

This correlator is the weakest part of the theoretical prediction.

A big effort has been done by **Khodjamirian et al.**, 1006.4945, where the charm-loop + single soft gluon emission was computed.

DRAWBACKS:

- still partial estimate of the effect, valid for q² ≤ IGeV² only
- multiple soft gluon emission suppressed as far as $q^2 << 4 \text{ m}^2_c$

HEPfit: Our weapon of choice

the HEPfit group:

@present

L.Silvestrini

M.Ciuchini

S.Mishima

E.Franco

L.Reina

M.Pierini

+ 7 postdocs + 4 PhD students

HEP fit is a framework for calculation of miss bles (Flavour, EWPT, Higgs) in the SM and Beyond, const Do not miss bles (Flavour, EWPT, Higgs) tomorrow's tomorrow's

It is a **public code** written talk of A.Paul! IPI parallelization, with GSL, Boost, ROOT and Bayes talk of Market (BAT) dependencies.

HEPfit will be officially released with a user friendly cross-platform CMake + a detailed documentation of the code (technical paper + Doxygen!)

First official release soon!

Developer version already available @ https://github.com/silvest/HEPfit

Our Analysis in the low q² region

MAIN THEORY INPUT:

For the form factors, LCSR state-of-the-art estimate in 1503.05534:

parameters: $3 \times 7 - 2 = 19$ (with 19x19 correlation matrix)

Following Jager & Camalich' 14, 1412.3183, we parametrized the non-factorizable hadronic contribution as:

$$h_{\lambda}(q^2) = h_{\lambda}^{(0)} + h_{\lambda}^{(1)}q^2 + h_{\lambda}^{(2)}q^4 , \ (\lambda = 0, \pm)$$

TO PROVIDE A MORE RELIABLE DESCRIPTION ABOVE FEW GeV 2

parameters: $3 \times 3 \times 2 = 18$

to which we assigned a generous prior (all flatly distributed in $\pm 2 \times 10^{-4}$).

EXPERIMENTAL INFO EXPLOITED:

$$F_L, A_{FB}, S_{3,4,5,7,8,9}$$

LHCb-CONF-2015-002

 $F_L, A_{FB}, S_{3,4,5,7,8,9}$ | 8 x 6 = 48 (with 8x8 correlation matrix per bin)

$$\mathcal{B}(B \to K^* \mu \mu)$$
 | x 4 --> 52 , $\mathcal{B}(B \to K^* \gamma)$ --> 53

SM@HEPfit, full fit SM@HEPfit, full fit HEP-fit full fit 0.4 LHCb 2015, 3 $\mathrm{fb}^{-1}\,\mathrm{data}$ LHCb 2015, 3 fb^{-1} data 0.2 \mathcal{S}_{r} 0.0 \sim 0.0 -0.2-0.2-0.4-0.4 $q^2 [GeV^2]$ $q^2 [GeV^2]$ SM@HEPfit, full fit SM@HEPfit, full fit SM@HEPfit, full fit LHCb 2015, 3 fb^{-1} data LHCb 2015, $3 \text{ fb}^{-1} \text{ data}$ LHCb 2015, 3 fb⁻¹ data 0.2 0.2 0.2 A_{FB} S_4 \mathcal{S}_{∞} 0.0 -0.2-0.2-0.4 -0.4-0.4 $[GeV^2]$ $[GeV^2]$ $q^{\,2}$ GeV^2 SM@HEPfit, full fit SM@HEPfit, full fit SM@HEPfit, full fit 0.4 LHCb 2015, 3 fb^{-1} data LHCb 2015, 3 fb⁻¹ data LHCb 2015, 3 fb^{-1} data F_L^{C} \mathcal{S}_{rc} 0.0 -0.2-0.20.4 0.2 -0.4-0.40.0└─ $q^2 [GeV^2]$ $q^2 [GeV^2]$ $q^2 [GeV^2]$

Switching off one observable per time, one can fit again and look @

The PULL of the
$$\frac{\mathcal{O}_{th}-\mathcal{O}_{exp}}{\sqrt{\sigma_{th}^2+\sigma_{exp}^2}}$$

$\mathbf{Bin} \; \mathbf{q^2} \left[GeV^2/c^4 \right]$	${f A_{FB}}$	$\mathbf{F_L}$	$\mathbf{S_3}$	$\mathbf{S_4}$	$\mathbf{S_5}$	S_7	$\mathbf{S_8}$	$oxed{\mathbf{S_9}}$
[0.1, 0.98]				0.7		The second secon	0.9	
[1.1, 2.5]	-0.6	-0.9	-0.8	-0.3	0.7	(2.0)	-0.8	-1.3
[2.5,4]							0.2	
[4,6]	-0.6	0.5	1.1				1.7	
[6, 8]	0.7	1.4	0.3	(-2.5)	-1.5	-0.3	-1.2	0.4
[1.1, 6]	-1.3	0.6	0.9	-1.0	0.4	-0.8	0.5	-0.7

No statistically significant deviation from the angular observables.

(the result concerning the branching ratios is good as well)

Cleaness of the "clean" P'5

Some peculiar ratios of observables have been proposed with the aim of exploiting possible form factor/hadronic uncertainty cancellations.

(see Descotes-Genon et al.'13 and ref. therein)

One example on top of some others:

$$P_5' \equiv rac{S_5}{\sqrt{F_L(1-F_L)}} \ {
m (q^2 pprox m^2{}_{\mu})}$$

Our data-blind analysis with large hadronic contributions clearly shows a large shift in both the central values + inflation of errors!

Fit & Prediction of P'5

(computed from the helicity amplitudes, i.e. not from fit result of S_5 and F_L)

(switching off S_5 and F_L together)

How to get the Anomaly

Data-blind estimation. No "charm-loop effect".

(1 sigma band here entirely due to LCSR form factors uncertainties)

Fit with Khodjamirian et al. estimate imposed in the whole q^2 range [0.98,8] GeV².

Face to face with hadronic contributions

One can easily read the size of the hadronic contribution h_λ as a shift in C_9 .

Eventually, to compare with the literature:

$$\tilde{g} \equiv \Delta C_9^{\text{(non pert.)}}/(2C_1)$$

hadronic contribution extracted is compatible with theory estimate order of magnitude for $q^2 \leq IGeV^2$ and grows for larger q^2 towards charm resonances ... it goes as expected!

Generic NP contribution in a Wilson coefficient would not bring any q² dependence.

CERN. July 10th 2015.

ANOMALY

```
anomaly | ə nom(ə)li |
noun (pl.anomalies)
```

: something that deviates from what is standard, normal, or expected

: there are a number of anomalies in the present system

Hadronic (charm) effects can sizably affect your prediction.

This is what one could expect to find in B to K*ll.

That is what we were able to extract from available data.

At present, no anomaly can be possibly claimed.

Thank Vous