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An amazing feat by ATLAS and CMS

∆MH /MH ≈ 0.2%, still dominated by statistics!

1) What do we learn from such a precise measurement of the Higgs boson mass?

2) How does this amazing feat compare with the accuracy of theory calculations?



Part 1)  The Standard Model Higgs



First message: the SM fit remains in good health
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Precise determination of the SM Lagrangian parameters

Knowing the Higgs mass, we can finally access all of the fundamental parameters of the SM 

m2, λ, g, g�, gs, yf

• Minimizing the scalar potential we can trade  m2  for the (gauge-dependent) vev  v

• Yukawa couplings other than yt  have tiny impact on the results. Their effect may well 
be included at the lowest order only (and will be neglected in the rest of this talk)

• Need six “physical” inputs (different options): 

The parameters are computed in the MS scheme at some low reference scale, e.g., Q = Mt .
They can then be evolved to a higher scale, to be matched with those of a BSM Lagrangian

or to study the stability of the SM scalar potential at large values of the Higgs field

A few details:

α , αs , Gµ, MH , Mt, MZ , MW
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Vacuum stability analyses 
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[Recent state-of-the-art analyses:  Buttazzo et al., 1307.3536v4;  Kniehl et al., 1503.02138]

• Extract MS parameters at Q = Mt  from physical inputs, including loop corrections

• The parameters are then evolved to higher scales with the full 3-loop RGE of the SM
[Mihaila et al., 1201.5868 & 1208.3357;  Chetyrkin+Zoller, 1205.2892 & 1303.2890;  Bednyakov et al., 1212.6829 & 1303.4364]

• The results can be given as interpolating formulae. E.g., this is from Buttazzo et al. 
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The SM Higgs mass beyond 2-loop
[Martin, 1310.7553 & 1508.00912;  Martin+Robertson, 1407.4336]

A different approach:                              
Take the MS values of                              and           directly as inputs at 

  the scale Q  (they can be separately computed from physical quantities)
v ξ=0λ, g, g�, gs, yt

Full 2-loop computation of the Higgs mass:
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The public code SMH by Martin and Robertson computes:                               or

MH = F (λ, v, g, g�, gs, yt, Q)

λ(Q) = F (MH , v, g, g�, gs, yt, Q)
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Divergent for mG=0 !
“Goldstone boson 
catastrophe” fixed
by resummation



Fixing the Goldstone boson catastrophe
[Martin 1406.2355;  Elias-MirÓ et al., 1407.4336;  see also Pilaftsis+Teresi, 1502.07986]

“Goldstone-boson ring” diagrams make Veff and its derivative IR divergent for mG –> 0 . 
The troubles start at 3-loop order for the potential and 2-loop order for the derivative:
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The divergent terms can all be absorbed in the 1-loop Goldstone contribution to the potential: 
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Theory error estimated from scale variation:  ≈100 MeV  (0.1%)
similar accuracy when extracting    from MHλ



Stability of the electroweak vacuum

Quantum corrections to the Higgs potential may 
induce a deeper vev at large values of the field:

At large    , the potential is dominated by the quartic term:φ

If the quartic coupling turns negative at some large scale, the potential is unstable.
This is still OK if the lifetime TEW  of the EW vacuum is larger than TU  (metastability) 

φ

V (φ)

v

Veff(φ) = m2(Q) |φ|2 + λ(Q) |φ|4 + ∆V loop

Veff(φ � v) ≈ λeff(Q ≈ φ) |φ|4 (       includes corrections from ∆V )λeff

NOTE:   the value of     at which the instability occurs is gauge-dependent (as are Veff and v )φ
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Nielsen identity  (1975)
The values of Veff at its extrema and the tunnelling 
rate between different minima are gauge invariant
[this holds only at all orders in perturbation theory] 

Various strategies for a consistent definition of the instability scale were discussed recently
[Di Luzio+Mihaila, 1404.7450;  Nielsen, 1406.0788;  Andreassen et al., 1408.0292;  Espinosa et al., 1505.04825;  Bednyakov et al., 1507.08833]

The “fate of the SM” is determined by the values of           etc.  (RG-evolved to the large scale)    λ, yt
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MH  >  (129.6 ± 1.5) GeV    for   Mt

pole  =  (173.34 ± 0.76exp ± 0.3th) GeV
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NOTE:   questions on the identification of Mt
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pole  =  (171.2 ± 2.4) GeV   [Alekhin et al., 1310.3059]σtt̄
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Stability condition: 
MH  >  (129.4 ± 1.5) GeV    for   Mt

pole  =  (173.34 ± 0.76exp ± 0.3th) GeV

Mt
pole  <  (171.22 ± 0.42) GeV   for   MH  =  (125.15 ± 0.24) GeV

[Rearranging the Goldstone contribution 
to Veff, to cure the gauge dependence 
of the stability bound order-by-order]
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Nature appears to have made rather special choices for the SM parameters
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• Speculation #1:  metastability as a critical phenomenon  [Buttazzo et al., 1307.3536]           
[the multiverse pushes for small   , but the universes where it is too small donʼt survive]λ

• Speculation #2:  metastability required by quantum gravity  [Espinosa et al., 1505.04825]           
[QG cannot be consistently defined in a (dS) vacuum with positive cosmological constant; 
the decay to another (AdS) vacuum with negative cosmological constant offers a way out]

All these “conclusions” can be altered if we introduce any New Physics below the Planck scale
[see also Branchina+ Messina, 1307.5193 and 1507.08812]



Part 2)  The MSSM Higgs(es)



The Higgs sector of the MSSM

• Two Higgs doublets H1 and H2 to give mass to up- and down-type fermions;   
five physical states: two scalars (h, H ) a pseudoscalar (A ) two charged (H±) 

• The Higgs quartic couplings are not free parameters as in the SM, they are  
fixed in terms of the EW gauge couplings g and gʼ . This induces a tree-level 
bound on the mass of the lightest scalar: Mh < MZ  |cos2ß|  (where tanß = v2/v1)

• In the decoupling limit MA >> MZ , the lightest scalar has SM-like couplings to 
fermions and gauge bosons, and saturates the mass bound, Mh ≈ MZ  |cos2ß|, 
while the other Higgses form a heavy and mass-degenerate “exotic” multiplet.

• For lower MA  both scalars share the role of the SM Higgs, and the mass of the 
lightest scalar is pushed down by mixing effects.

• Radiative corrections can raise the MSSM prediction for the lightest scalar mass 
and allow for  Mh  ≈ 125 GeV.



- “Maximal-mixing” scenarios (Xt  ≈ √6 MS) can work with stops around the TeV  
(but only if  tanß  and  MA  are large enough that  Mh ≈ MZ  at tree level)

- Small-mixing (Xt  << MS) or small tanß (or MA ) require multi-TeV stop masses

–

(decoupling limit,  MS =  average stop mass,  Xt = At - µ cotß  =  L-R stop mixing)

The dominant one-loop corrections to the Higgs masses are due to the particles with 
the strongest couplings to the Higgs bosons:  the top (and bottom) quarks and squarks

Radiative corrections to the light-Higgs mass in the MSSM

A quarter-century of calculations gave us full 1-loop, almost-full 2-loop and partial 3-loop results
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Ellis Espinosa Haber Hahn Harlander Heinemeyer Heinrich Hempfling Hoang Hollik Kant 
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1991 – 2015
[Apologies if I forgot anybody – and this is just for radiative corrections in the CP-conserving MSSM !!!]
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How well can we predict Mh in the MSSM with TeV-scale SUSY?

Simplified benchmark point:  tanß = 20, all SUSY masses = 1 TeV,  Xt  varied to maximize Mh

Public code Mh  [GeV]

SPheno  3.3.7 126.3

SuSpect  2.43 125.8

SoftSUSY  3.6.2 124.3

NMSSMTools  4.7.1 124.6

FeynHiggs  2.11.2 129.8

All of these codes include full 1-loop + dominant (strong+Yukawa) 2-loop corrections to Mh
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With great corrections comes great uncertainty! 
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Simple test-point:
MS = 10 TeV, 

Xt = 0, tanß = 20

Draper et al :         Mh = 123.2  GeV

Bagnaschi et al :   Mh = 123.6  GeV 

SusyHD:               Mh = 123.6  GeV
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“hybrid” calculation: 
2-loop diagrammatic

+ partial resummation

Pure EFT calculations;
theoretical uncertainty
estimated as < 1 GeV

(in this point!!!) 

Again, part of the discrepancy is related to the determination of yt



Uncertainties of the EFT calculation
[ PardoVega+Villadoro (SusyHD) 1504.05200 ]
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[ Xt or tanß tuned so that Mh = 125 GeV ]

Mh < 125 GeV

2 x103

SM uncertainty:  from the SM calculation (mostly from 3-loop QCD effects in yt )

SUSY uncertainty:  estimated varying the SUSY matching scale by a factor 1/2 or 2
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- The prediction depends on the high-scale parameter tanß  (and Xt  in HSS)

- The observed Mh  determines an upper bound on the SUSY-breaking scale

Pushing un-naturalness: High-scale SUSY and Split SUSY

(heavy scalars, light higgsinos and gauginos)
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 ( µ = Mgʼ = 2 TeV )

Self-promotion:  the Fake Split-SUSY Model (FSSM)

Benakli et al., 1312.5220

Inspired by models with Dirac gauginos: higgsinos and gauginos replaced by 
“fake” counterparts that do not couple to the SM-like Higgs boson 

[ Benakli et al., 1312.5220;  also Benakli+Darme+Goodsell, 1508.02534 ]



In the FSSM there is no upper bound on the SUSY-breaking scale 
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Benakli et al., 1312.5220

Inspired by models with Dirac gauginos: higgsinos and gauginos replaced by 
“fake” counterparts that do not couple to the SM-like Higgs boson 
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Reopening the low (MA, tanß ) window   
[see e.g.:  Arbey et al., 1303.7450;  Djouadi+Quevillon, 1304.1787]

• For low MA, extended Higgs sector potentially accessible at the LHC

• For low tanß, not yet ruled out by the H, A —> tau tau searches

• Away from the decoupling limit, sizable couplings of H, A to gauge bosons and h

• At low tanß,  Mh ≈ 125 GeV  requires large stop masses MS :

-  For  MA ≈ MS , tanß = 1 implies MS  ≈ 108 – 1010  GeV    

At low MA  we might need an even larger MS                               

Appeal of the low (MA, tanß) region:

However...

This calls for the resummation of large logarithms in the EFT approach

Interesting Higgs phenomenology:   H —> hh,  H —> WW,  H —> ZZ,  A —> Zh



Effective THDM with heavy SUSY

1) SUSY boundary 
conditions at the 

scale MS :

2)  RG evolution of all seven lambdas from MS to the weak scale;

3)  scalar mass matrix in terms of the weak-scale lambdas:

(NOTE: loop 
corrections)

[Haber+Hempfling, early 90s,  (...),  Lee+Wagner, 1508.00576] 
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For very low MA and tanß,  Mh = 125 GeV can only be reached with light EW-inos!
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See Gabriel Leeʼs talk in Fridayʼs SUSY / Higgs session



An alternative approach: the hMSSM
[Maiani et al., 1305.2172;  Djouadi et al., 1307.5205 and 1502.05653]

This allows for a “model independent” analysis with only two input parameters
(assuming no direct corrections from SUSY particles to the Higgs couplings)

EFT comparison:
[Lee+Wagner, 1508.00576]

Good agreement (few %) for MH and mixing as long as the 
corrections to the (1,1) and (1,2) elements are suppressed

(in particular, for                          ) µXt/M
2
S � 1

The dominant corrections affect mostly the (2,2) element of the scalar mass matrix. 
We can trade it for the known Mh , and get formulae for MH and for the scalar mixing angle: 
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Setting the (1,1) and (1,2) elements to their tree-level values (good approximation?)
 we obtain formulae that depend only on Mh, MZ, MA and tanß





Conclusions

• The discovery of the Higgs and the accurate measurement of its mass have 
focused the theoristsʼ attention on precision calculations in the Higgs sector

• The accuracy of the prediction for MH  from the SM Lagrangian parameters      
(or rather the extraction of said parameters from the known value of MH )          
is now of order (0.1–0.2)%, comparable with the experimental accuracy

• In the MSSM, the measured Higgs mass calls for large radiative corrections;  
the accuracy of Higgs-mass calculations appears to be still of order “few %” 

• Several hints point to scenarios with heavy superpartners; in that case, large 
logarithmic corrections need to be resummed in an effective-theory approach

• If the EFT valid at the weak scale is the SM, part of the corrections can be 
borrowed from the SM calculation, reducing the uncertainty to less than 1%

• Of course, much more interesting phenomenology in scenarios where the EFT 
valid at the weak scale is not  the SM  (e.g., light -inos and/or light THDM)



Thank you!!!


