Indirect Searches for Dark Matter: Signal candidates & Constraints

Christoph Weniger GRAPPA, University of Amsterdam

28th August 2015, SUSY 2015 Tahoe City

Indirect searches for WIMP annihilation products

Injection rate of DM annihilation products

Self-annihilation cross section mass density of DM $\frac{d^3N_X}{dVdtdE} = \frac{\langle \sigma v \rangle \rho_{\rm DM}^2}{2m_{\rm DM}^2} \frac{dN_X}{dE}$ Energy spectrum DM mass

Charged particles

- Spatial diffusion in magnetic turbulent fields
- Significant energy losses

DM annihilation

Photons & neutrinos

 Unperturbed propagation along geodesics

Observer

Negligible energy losses

Goal: Find excess above astro background

Relevant parameters

Background parameters
Annihilation cross-section
DM mass
Annihilation channels

Credit: M. Cirelli

- Updates
 - Anti-protons
 - Positrons and CMB
 - Gamma-ray dwarfs
 - Gamma-ray lines
 - Neutrinos from the Sun
- The Fermi GeV excess
- Outlook & Conclusions

Searches with Antimatter

Finally! Anti-protons from AMS-02

AMS-02 Taking data since 2011

Preliminary anti-proton to proton ratio

- Up to 350 GeV Syst. + stat. error bars?
- Compatible with previous results by PAMELA, though with significantly smaller error bars at high energies
- Shown as excess above the expectations from secondary production (ICRC 2015: "Theoretical prediction based on pre-AMS knowledge of cosmic ray propagation")

Samuel Ting

The "grammage" matters

Two sources for cosmic rays

Primary cosmic rays from supernova remnants (likely)

Secondary cosmic rays from spallation etc

The "grammage" matters

Two sources for cosmic rays

Primary cosmic rays from supernova remnants (likely)

Secondary cosmic rays from spallation etc

Diffusion in a box

Total grammage (column density along propagation path)

$$G_{\text{total}} = n_{\text{crossings}} G_{\text{disk}} \sim \mathcal{O}(10 \text{ g cm}^{-2})$$

Secondary Boron: $n_B = n_C \sigma(C \to B) \cdot G_{\mathrm{total}} \quad \Rightarrow G_{\mathrm{total}}$

Secondary antiprotons: $n_{\bar{p}} = n_p \sigma(p \to \bar{p}) \cdot G_{\text{total}} \qquad \Rightarrow n_{\bar{p}}$

No excess above secondary backgrounds

Relevant uncertainties for CR BG

- pbar production cross-section
- spectrum of CR primaries
- CR propagation
- solar modulation (below ~10 GeV)

Situation

- No excess observed above astrophysical background, when all uncertainties are taken into account
 - → Only upper limits

No excess above secondary backgrounds

Dark Matter searches with positrons

AMS Coll., PRL 110 (2013) 141102

10⁻¹

AMS A FERMI
PAMELA
AMS-01
HEAT
CAPRICE94
TS93

Positron fraction in cosmic rays

 $\frac{\Phi_{e^+}}{\Phi_{e^{\pm}}}$

What is new?

 AMS-02 presented additional data point at high energies

10

Secondary production

positron, electron energy [GeV]

Remember: Many DM interpretations ruled out by CMB

Summary

- The positron excess (AMS-02 e+ & PAMELA e+ & Fermi e+- & HESS e+-) can be explained e.g. with leptonic DM annihilation, masses around 1 TeV and cross-sections 100x 1000x larger than thermal
- This is in general conflict with e.g. gamma-ray observations (except for cored profiles)
- For s-wave annihilation, this is excluded for all models of interest (1506.03811) by the non-observation of a broadening of the last scattering surface due to the injection of ionizing particles

But: Data provides extremely sensitive probe for light DM

Searches with gamma rays

Many potential targets

Signal is approximately proportional to column square density of DM

$$\frac{d^2\phi}{d\Omega dE} = \frac{\langle \sigma v_{\rm rel} \rangle}{8\pi m_{\chi}^2} \frac{dN_{\gamma}}{dE} \times \int_{\rm l.o.s.} ds \ \rho(\vec{r}[s,\Omega])^2$$

Galactic DM halo

- good S/N
- difficult backgrounds
- angular information

Extragalactic

- nearly isotropic
- only visible close to Galactic poles
- angular information
- Galaxy clusters?

Galactic center (~8.5 kpc)

- brightest DM source in sky
- but: bright backgrounds

DM clumps

- w/o baryons
- bright enough?
- boost overall signal

[review on N-body simulations: Kuhlen, Vogelsberger & Angulo (2012)]

Dwarf Spheroidal Galaxies

- harbour small number of stars
- otherwise dark (no gamma-ray emission)

New candidates for dwarf spheroidals!

- 12 classical dSphs
- LMC + SMC
- 15 ultra-faint dSphs (SDSS)
- 8 new dSph candidates from DES Y1A1 (1503.02584, 1503.02079)
- 5 more dSph candidates from other searches (1503.05554, 1503.08268, 1506.01021, 1503.02079)
- 8 new dSph candidates from DES Y2 (1508.03622)
- J-values for new dSph candidates only known for Reticulum II (1504.07916, 1504.03309)
- Maybe hundreds of additional dSphs left to discover

Current situation

Limits based on 15 dSphs (not including DES candidates)

- Pass 8: Released June 24 this year!
- Improvements:
 - 4 → 6 years data
 - Pass 7 → pass 8
 - Including PSF quality in fit
- Limits in very good agreement with expectations → no indication for signal from

DES candidate dSphs

- Analysis with 6 years of pass 8 data shows no evidence for gamma-ray emission from the 8 new DES candidates (Fermi coll. 1503.02632)
- Largest excess in Reticulum II (2.4 sigma local significance)
- Independent analysis (Geringer-Sameth+ 1503.02320, Hooper+ 1503.06209) with pass 7 report somewhat larger significance in Reticulum II

Comparison and future predictions

Future possible improvements

- More data: Up to 15 years (until 2023, formally approved until 2016)
- 3x more dwarfs
 - → would lead to factor ~4 improvement of limits
 - → strong enough to probe GC excess even for pessimistic DM profiles

Preliminary HESS-I results (and HESS-II projections)

Results

 Previous results: 2011 PRL (112h), using Tasitiomi signal spectrum

• Now:

254h

• full 2D spectra + spatial likelihood

• realistic signal spectra

→ Significant improvement of limits

→ tau+ tau- limits <u>reach thermal</u>

cross-section

Projections for HESS-II

 Improvement by factor 5 and more below 1 TeV

On & Off regions

HESS-II results on gamma-ray lines

Previous results

• HESS-I upper limits 500 GeV - 25 TeV

New preliminary HESS-II results

- Search in "Fermi hot spot" (l=-1.5 deg; b=0 deg)
 100 GeV – 2 TeV
- Preliminary results using 2.8h data (20h available in total)
- Unbinned spectral analysis
- "Off-region" for BG estimates is Galactic center
- Upper limits come close to "Fermi line"
- Projected 100h limits will "close gap between HESS-I and Fermi limits"

Remember

 DM interpretation of 130 GeV feature already in strong conflict with Fermi LAT pass 8 data (> 3 sigma)

HESS-II results on gamma-ray lines

Searches with Neutrinos (from the Sun)

Neutrinos from the Sun

Spin dependent scattering

- Dominant contribution from scattering on hydrogen
- Usually more constraining than direct searches

Spin independent scattering

- Heavier nuclei contribute
- Usually less constraining than direct searches (XENON, LUX, etc)

$$\dot{N} = C - C_A N^2$$
Number of WIMPs rate rate

$$C \propto \sigma \rho_{\chi}$$

In equilibrium, the annihilation rate is fully determined by the capture rate:

$$\Rightarrow \Gamma_A = \frac{C_A}{2} N_{\text{eq}}^2 = \frac{C}{2}$$

Neutrino detectors

Status IceCube

- Located at geographic south pole
- Completed (IceTop+IceCube+DeepCore) since 2011
- Effective area for muon neutrinos O(mm² m²), depending on energy and analysis details
- Updated results on Sun neutrinos shown at ICRC 2015 (341d livetime, IC86)

Status ANTARES

- Located in the Mediterranean Sea
- Completed in 2008
- Effective area O(mm² cm²)
- Updated results on Sun neutrinos shown at ICRC 2015

Status Super-Kamiokande

- Located in Mozumi Mine, Japan
- SK-IV completed in 2008
- Gives rise to best limits at low WIMP masses
- Updated results from 2015 (Sun neutrinos, 1503.04858)

Upper limits

Limits summary

- IceCube (preliminary IC86-1 results at ICRC 2015)
 - Mostly austral winter data, through-going muons, search for clustering of neutrinos around Sun
 - Improves previous IC79 results by factor up to 4 at TeV DM masses
- Antares limits (preiminary resulst at ICRC 2015)
 - Based on 1321 days of data (2007 2012) comparable to IceCube
- Super-K (1503.04858, based on ~4000d of data)
 - Using contained events for the first time → Significant improvement below 200 GeV
 - Strongest limits below DM masses of ~100 GeV

The Fermi Galactic center excess

Goodenough & Hooper 2009, Vitale+ (Fermi coll.) 2009, Hooper & Goodenough 2011, Hooper & Linden 2011, Boyarsky+ 2011 (no signal), Abazajian & Kaplinghat 2012, Hooper & Slatyer 2013, Huang+ 2013, Gordon & Macias 2013, Macias & Gordon 2014, Zhou+ 2014, Abazajian+ 2014, Daylan+2014, Calore+ 2014, Gaggero+ 2015

Dark Matter annihilation works just fine

Calore, Cholis, CW 1409.0042

$$\rho_{\rm DM} = \frac{1}{r^{\gamma}(r_s + r)^{2 - \gamma}}$$
$$\gamma \simeq 1.26$$

Fits with dark matter annihilation spectra

- Large *correlated* uncertainties affect the bestfit spectrum
- Large number of different final states possible
- Even annihilation into W+W- not excluded, when uncertainties in predicted spectra are taken into account (Achterberg+ 1502.05703)
- Formally best fit: broken power law

Channel	$(10^{-26} \text{cm}^3 \text{s}^{-1})$	m_{χ} (GeV)	χ^2_{min}	p-value
$ar{q}q$	$0.83^{+0.15}_{-0.13}$	$23.8^{+3.2}_{-2.6}$	26.7	0.22
$\bar{c}c$	$1.24^{+0.15}_{-0.15}$	$38.2^{+4.7}_{-3.9}$	23.6	0.37
$ar{b}b$	$1.75^{+0.28}_{-0.26}$	$48.7^{+6.4}_{-5.2}$	23.9	0.35
$ar{t}t$	$5.8^{+0.8}_{-0.8}$	$173.3_{-0}^{+2.8}$	43.9	0.003
gg	$2.16^{+0.35}_{-0.32}$	$57.5_{-6.3}^{+7.5}$	24.5	0.32
W^+W^-	$3.52^{+0.48}_{-0.48}$	$80.4_{-0}^{+1.3}$	36.7	0.026
ZZ	$4.12^{+0.55}_{-0.55}$	$91.2^{+1.53}_{-0}$	35.3	0.036
hh	$5.33^{+0.68}_{-0.68}$	$125.7^{+3.1}_{-0}$	29.5	0.13
$ au^+ au^-$	$0.337^{+0.047}_{-0.048}$	$9.96^{+1.05}_{-0.91}$	33.5	0.055
$\left[\mu^+\mu^-\right.$	$1.57^{+0.23}_{-0.23}$	$5.23^{+0.22}_{-0.27}$	43.9	$0.0036]_{\text{Jes}}$

ADDITIONAL TEMPLATES

- We test the possibility that an additional component centered at the GC contributes to the data (2D gaussians, Navarro-Frenk-White, or a gas-like distribution as proxy for unresolved sources)
- Peaked profiles with long tails (NFW, NFW contracted) yield the most significant improvements in the data-model agreement for the four variants of the foreground/background models. IC ring I contribution ~2-3x smaller than without additional component and HI ring I contribution is ~2-5x larger
- The predicted spectrum depends on the foreground/background models.

Integrated flux in 15°x15° ROI, NFW component

ADDITIONAL TEMPLATES

- We test the possibility that an additional component centered at the GC contributes to the data (2D gaussians, Navarro-Frenk-White, or a gas-like distribution as proxy for unresolved sources)
- Peaked profiles with long tails (NFW, NFW contracted) yield the most significant improvements in the data-model agreement for the four variants of the foreground/background models. IC ring I contribution ~2-3x smaller than without additional component and HI ring I contribution is ~2-5x larger
- The propagation Parametric fits (PL + exp cutoff) ound/background mode Non-parameteric fits to to excess energy spectrum a in 15°x15° ROI, N excess energy spectrum

ADDITIONAL TEMPLATES

- We test the possibility that an additional component centered at the GC contributes to the data (2D gaussians, Navarro-Frenk-White, or a gas-like distribution as proxy for unresolved sources)
- Peaked profiles with long tails (NFW, NFW contracted) yield the most significant improvements in the data-model agreement for the four variants of the foreground/background models. IC ring I contribution ~2-3x smaller than without additional component and HI ring I contribution is ~2-5x larger
- The propagation Parametric fits (PL + exp cutoff) ound/background mode Non-parameteric fits to to excess energy spectrum a in 15°x15° ROI, N. excess energy spectrum

Using suboptimal parametrization likely gives biased results.

Using non-tuned CR index likely gives biased results.

ADDITIONAL TEMPLATES

- We test the possibility that an additional component centered at the GC contributes to the data (2D gaussians, Navarro-Frenk-White, or a gas-like distribution as proxy for unresolved sources)
- Peaked profiles with long tails (NFW, NFW contracted) yield the most significant improvements in the data-model agreement for the four variants of the foreground/background models. IC ring I contribution ~2-3x smaller than without additional component and HI ring I contribution is ~2-5x larger
- The propagation Parametric fits (PL + exp cutoff) ound/background mode Non-parameteric fits to to excess energy spectrum ax in 15°x15° ROI, N. excess energy spectrum

Using suboptimal parametrization likely gives biased results.

Using non-tuned CR index likely gives biased results.

Astrophysical interpretations

Leptonic activity at the Galactic center:

Petrovic+ 2014; Cholis+ 2015

- Recent injection of hard electrons at Galactic center,
 ~1 Myr ago
- Diffusion → approx. spherical profile & emission
- Can potentially explain peaked spectrum
- The morphology, especially emission above 10 deg (1.5 kpc) is hard to reproduce, since the energy loss time of electrons is < 1 Myr.

Millisecond pulsars (MSPs):

Wang+ 2005; Abazajian 2011; Gordon & Macias 2013; Hooper+ 2013; Yuan & Zhang 2014; Hooper+ 2013; Calore+ 2014; Cholis+ 2014, Petrovic+ 2014

- Spectrum of known MSPs agrees reasonably well with claimed GCE spectrum (except at sub-GeV energies)
- Observed luminosity function is claimed to be incompatible with GCE (we don't see resolved MSPs at GC) Hooper+; Calore+; Cholis+ 2013
- Compatible with distribution of low-mass X-ray binaries (possible MSP progenitors)

An observational challenge

Point sources or diffuse emission?

• A signal composed of point sources would appear more "speckled" than a purely diffuse

signal

Proposed methods

- One-point statistics
 - Random contribution of point sources to individual pixels leads to non-Poissonian noise [Lee+ 1412.6099] (successfully used at high latitudes by Malyshev & Hogg 1104.0010)
 - **BUT**: Requires modeling / subtraction of backgrounds → Subject to systematics
- Local maxima of normalized wavelet transform:
 - "Wavelet transform": spatially constrained Fourier transform.
 Filters out structures of a specific size, like point sources. Removes diffuse emission.
 - "Normalized": Null hypothesis is equivalent to smoothed Gaussian random field
 - → Largely independent of modeling of diffuse backgrounds

Wavelet transform of inner Galaxy data

Image color: Value of normalized wavelet transform

Black circles: Wavelet SNR peaks with values above 2 (circle area ~ S)

Red circles: 3FGL sources for comparison (circle area ~ sqrt(TS) in 1-3 GeV band)

Green crosses: Unmasked sources (MSP-like)

Dashed lines: Spatial bins for likelihood analysis

S

Best-fit contours agree with MSP expectations

Results

- For a luminosity function index around 1.5, a MSP population with the best-fit normalization would reproduce 100% of the excess emission
- The best-fit cutoff luminosity is compatible with gamma-ray emission from detected nearby MSPs (beware of large uncertainties due to uncertainties in the distance measure, Petrovic+ 1411.2980, Brandt & Kocsis 1507.05616)

Lee+ 1506.05124 come to similar conclusions (with different technique, though they find a slightly different luminosity function)

Future

Indirect detection prospects for the next years

Note: Real instr. systematics are *correlated*, detailed studies are ongoing in CTA coll.

Anti-deuterons

Detection technique based on generation of exotic atoms and observation of annihilation products.

Anti-deuterons as indirect search channel

- Anti-deuteron flux about 10 orders of magnitude below proton flux
- BG free channel!
- Can be sensitive to WIMP models close to thermal cross-section
- AMS-02: analysis is ongoing
- GAPS: LDB flights from Antarctica proposed to NASA

ICRC 2015, GAPS coll., Von Doetichem

Conclusions

- Progress on all fronts:
 - AMS-02 antiprotons
 - Dwarf limits (Fermi pass 8 & numerous new dSph candidates from DES)
 - Searches for gamma-ray lines and halo signal (HESS-I)
 - Neutrinos from Sun (IceCube IC86, Super-K and ANTARES)
- Next future
 - HESS-I & II results on gamma-ray lines and halo
 - More dSphs, improved Fermi limits
 - Antideuteron from AMS-02
- The Galactic center excess
 - Resembles impressively well a DM annihilation signal
 - Most plausible alternative explanation is MSPs (supported by searches for unresolved sources)
- Future outlook: SKA, CTA, GAPS, ...