Searches for R-parityviolating SUSY at CMS

Chris West UCSB for the CMS Collaboration

Outline

Will present 8 TeV analyses sensitive to different terms in RPV superpotential*:

$$W_{\text{RPV}} = \frac{1}{2} \lambda_{ijk} L_i L_j \overline{E}_k + \lambda'_{ijk} L_i Q_j \overline{D}_k + \frac{1}{2} \lambda''_{ijk} \overline{U}_i \overline{D}_j \overline{D}_k + \mu'_i H_u L_i$$

i,j,k=generation indices

- Multilepton search with strong production
- Multilepton search with electroweak production
- Dilepton, single lepton and fully hadronic searches

Conclude with commissioning results at 13 TeV relevant for 2015 RPV analyses

* For a review, see i.e. Phys. Rept. 420 (2005) 1

Leptonic RPV

$$\frac{1}{2}\lambda_{ijk}L_iL_j\overline{E}_k$$

Multilepton analyses with strong production sensitive to fully leptonic RPV

Multilepton search for squarks and gluinos

- Requirement of four isolated leptons is the only selection
- Search in M₁:M₂ plane where
 - M_1 =invariant mass of lepton pair that is closest to Z mass
 - M₂=invariant mass of other lepton pair

Multilepton analysis with strong production

		$M_1 < 75 \text{ GeV}$	$75 < M_1 < 105 \text{GeV}$	$M_1 > 105 \text{ GeV}$		
	ZZ	$0.76 {\pm} 0.18$	15±4	$0.30 {\pm} 0.07$		
$M_2 > 105 \mathrm{GeV}$	rare	$0.28 {\pm} 0.13$	2.7±1.0	$0.12 {\pm} 0.05$		
	non-prompt	$0.4{\pm}0.4$	0.7±0.7	$0.05 {\pm} 0.05$		
	all backgrounds	$1.4{\pm}0.5$	18±4	0.47 ± 0.10		
	observed	0	20	0		
$75 < M_2 < 105 { m GeV}$	ZZ	$0.10{\pm}0.03$	150*	$0.05 {\pm} 0.01$		
	rare	$0.12{\pm}0.05$	2.5±1.2	$0.06 {\pm} 0.03$		
	non-prompt	0.3 ± 0.3	0.6±0.6	$0.05 {\pm} 0.05$		
	all backgrounds	$0.52{\pm}0.34$	153*	0.16±0.06		
	observed	0	160	0		
$M_2 < 75 \mathrm{GeV}$	ZZ	9.8±2.0	32±8	$0.98 {\pm} 0.20$		
	rare	$0.31 {\pm} 0.14$	2.5±1.2	0.011±0.005		
	non-prompt	$0.3 {\pm} 0.3$	$0.8{\pm}0.8$	0.06±0.06		
	all backgrounds	$10.4{\pm}2.0$	35±8	1.0±0.2		
	observed	14	30	1		

- ZZ→4ℓ contribution normalized to CMS σ(ZZ) measurement
- Rare backgrounds (WWtt, WWZ, WZZ, ZZZ, ttZ) taken from MC
- Jet-as-lepton fake rate evaluated in a control sample with three identified leptons

Chris West, UCSB

Semileptonic RPV

 $\lambda'_{ijk}L_iQ_j\overline{D}_k$

Multilepton analyses with electroweak production sensitive to semileptonic RPV

Multilepton search for Higgsinos and winos

7

- Select:
 - \geq 3 leptons (incl. taus), veto low m_{II}
- Background
 - WZ and ZZ from MC, validated in data control samples
 - Mis-identified leptons evaluated from data
- 32 exclusive signal bins in m_{\parallel} , N_b , N_{τ} , and S_T =scalar sum of jet and lepton p_T
- Large number of constraints on both LLE and LQD interactions depending on:
 - Type of lepton in the final state
 - State (Higgsino or wino) that is pairproduced

Chris West, UCSB

Hadronic RPV

Dilepton, single lepton and fully hadronic analyses sensitive to hadronic RPV

Motivation for hadronic RPV

- Hadronic RPV less constrained by proton decay and neutrino measurements
- Minimal flavor violation* results in a hierarchy of RPV couplings from Yukawa couplings
- $\lambda"_{323}$ is the largest RPV coupling in some of these models

* E. Nikolidakis and C. Smith, PRD 77 (2008) 15021 C. Csaki, Y. Grossman, and B. Heidenreich, PRD 85 (2012) 095009

Sbottom mass reconstruction in dilepton final state

s, d

 \bar{s}, \bar{d}

 W^+

 W^{-}

- Require
 - ≥2 isolated leptons
 - ≥2 loose b-tags (with at least 1 medium)
- Use MET to solve for neutrino 4-momenta, assuming mass of top and \breve{W}
- Combine with light jet to find sbottom mass

Both light jets arising from sbottom \rightarrow ts pair production have high p_T , depending on sbottom mass \Rightarrow fit as function of mass and p_T of two

lead jets:

S.

$$\rho_{3D}^{SM}(m, p_{T}^{(1)}, p_{T}^{(2)}) = \rho_{mass}^{SM}(m|p_{T}^{(2)})\rho_{2D}^{SM}(p_{T}^{(1)}, p_{T}^{(2)})$$

$$\rho_{3D}^{signal}(m, p_{T}^{(1)}, p_{T}^{(2)}) = \rho_{mass}^{signal}(m|p_{T}^{(2)})\rho_{2D}^{signal}(p_{T}^{(1)}, p_{T}^{(2)})$$

Dilepton final state: results

Projection of a typical fit onto sbottom mass axis

Sensitivity to increasing sbottom mass

Signal regions

Second-leading light jet $p_{\rm T}$	Region
30 to 50 GeV	control region (CR)
50 to 80 GeV	signal region 1 (SR1)
80 to 110 GeV	signal region 2 (SR2)
> 110 GeV	signal region 3 (SR3)

11

- The single lepton and hadronic analyses are interpreted with the gluino→tbs final state
- Sensitive to $\lambda^{"}_{tbs}$

One-lepton final state

- Template fit of N_b distribution in three bins of N_{jet} (6, 7, \geq 8)
- Gluon splitting contribution corrected with $e+\mu$ control sample at low N_{jet}

Fully hadronic final state

Data used to correct N_b distributions from MC

Modeling of QCD flavor composition corrected based on fit to b-tag discriminant

Fully hadronic final state

Fit of N_b distribution in (N_{jet}, H_T) bins with floating QCD yield

13 TeV commissioning

- The sum of the masses of large radius jets is a useful background discriminator in high multiplicity events^{1,2}
- Used by ATLAS in 8 TeV analyses³; increased usage planned in CMS analyses at 13 TeV
- Will show commissioning results of R=0.4 anti-k_T jets clustered into R=1.2 anti-k_T jets

$$m(J_i) = \sqrt{p(J_i)^2} = \sqrt{\left(\sum_{\text{objects } n \text{ in } J_i} p_n\right)^2}$$
$$M_J = \sum_{J_i = \text{large} - R \text{ jets}} m(J_i)$$

Chris West, UCSB

¹PRD 85, 055029 (2012) ²JHEP08 (2013) 136 ³PRD 91, 112016 (2015)

Studies of R=0.4 jet masses in 13 TeV data

H_T >1000 GeV, MET<50 GeV, N_{lep}=0

- Small radius jet masses constitute most of the mass of large radius jets at low $M_{\rm J}$ and up to 30% at high $M_{\rm J}$
- Mean jet masses data/MC agreement to within $1\% \rightarrow very$ little effect on M_J

Sum of R=1.2 jet masses

Tail in M_J distribution in ttbar events arises from ISR jets overlapping with the rest of the event

Investigate ISR modeling in Z(→µµ)+jets events

→good agreement

Conclusions

- Broad coverage of RPV-induced final states. Within the specified models, we exclude:
 - m_{gluino}<1.04 TeV
 - m_{bottom squark}<326 GeV
 - Higgsino and wino masses ranging from 300 to 900 GeV, depending on the coupling
- Still producing interesting results from 8 TeV data!
- Early 13 TeV data used to commission new analysis techniques useful for RPV analyses

Yields in multilepton analysis with strong production

NL	N_{τ}	N _b	N _{OSSF}	$m_{\ell\ell}$	$0 < S_{\rm T} < 300$		$300 < S_{\rm T} < 600$		$600 < S_{\rm T} < 1000$		$1000 < S_{\rm T} < 1500$		$S_{\rm T} > 1500$	
					obs	exp	obs	exp	obs	exp	obs	exp	obs	exp
4	0	0	0	-	0	0.06 ± 0.06	0	0.09 ± 0.07	0	0.00 ± 0.03	0	0.00 ± 0.03	0	0.00 ± 0.03
4	0	1	0	-	0	0.00 ± 0.03	0	0.00 ± 0.03	0	0.06 ± 0.05	0	0.00 ± 0.03	0	0.00 ± 0.03
4	0	0	1	on-Z	2	3.1 ± 0.90	5	1.9 ± 0.48	0	0.44 ± 0.16	1	0.06 ± 0.06	0	0.00 ± 0.03
4	0	1	1	on-Z	2	0.07 ± 0.05	2	1.1 ± 0.53	0	0.57 ± 0.30	0	0.12 ± 0.09	0	0.02 ± 0.03
4	0	0	1	off-Z	2	0.48 ± 0.18	0	0.27 ± 0.11	0	0.07 ± 0.05	0	0.00 ± 0.02	0	0.00 ± 0.03
4	0	1	1	off-Z	0	0.04 ± 0.04	0	0.34 ± 0.17	0	0.06 ± 0.08	0	0.04 ± 0.04	0	0.00 ± 0.03
4	0	0	2	on-Z	135	120 ± 29	26	43 ± 10	4	6.0 ± 2.0	1	0.63 ± 0.26	0	0.06 ± 0.04
4	0	1	2	on-Z	1	1.0 ± 0.27	4	3.2 ± 1.1	1	1.1 ± 0.39	0	0.11 ± 0.06	0	0.04 ± 0.04
4	0	0	2	off-Z	7	8.3 ± 2.3	3	1.1 ± 0.30	0	0.11 ± 0.05	0	0.01 ± 0.02	0	0.00 ± 0.02
4	0	1	2	off-Z	0	0.18 ± 0.07	1	0.22 ± 0.11	0	0.15 ± 0.08	0	0.00 ± 0.03	0	0.00 ± 0.03
4	1	0	0	-	2	1.1 ± 0.46	1	0.54 ± 0.20	0	0.12 ± 0.12	0	0.00 ± 0.03	0	0.00 ± 0.03
4	1	1	0	-	0	0.26 ± 0.16	0	0.29 ± 0.13	0	0.13 ± 0.11	0	0.01 ± 0.02	0	0.00 ± 0.03
4	1	0	1	on-Z	43	42 ± 11	10	12 ± 3.1	0	1.8 ± 0.63	0	0.11 ± 0.07	0	0.02 ± 0.03
4	1	1	1	on-Z	2	1.0 ± 0.40	2	1.7 ± 0.5	0	0.78 ± 0.33	0	0.04 ± 0.04	0	0.01 ± 0.03
4	1	0	1	off-Z	18	8.4 ± 2.2	4	2.1 ± 0.52	2	0.48 ± 0.18	0	0.13 ± 0.08	0	0.01 ± 0.03
4	1	1	1	off-Z	1	0.64 ± 0.31	0	1.2 ± 0.44	0	0.30 ± 0.13	0	0.02 ± 0.03	0	0.00 ± 0.03
3	0	0	0	-	72	80 ± 23	32	27 ± 11	3	3.1 ± 1.00	0	0.22 ± 0.18	0	0.07 ± 0.06
3	0	1	0	-	37	33 ± 16	42	39 ± 19	2	5.0 ± 2.0	0	0.36 ± 0.14	0	0.06 ± 0.07
3	0	0	1	on-Z	4255	4400 ± 690	669	740 ± 170	106	110 ± 41	11	15 ± 6.9	3	1.3 ± 0.76
3	0	1	1	on-Z	140	150 ± 25	122	110 ± 25	16	25 ± 7.0	2	3.3 ± 1.2	1	0.32 ± 0.22
3	0	0	1	$m_{\ell\ell} < 75 (\text{GeV})$	617	640 ± 100	84	86 ± 21	14	11 ± 3.6	0	1.2 ± 0.39	1	0.12 ± 0.09
3	0	1	1	$m_{\ell\ell} < 75 (\text{GeV})$	62	74 ± 28	52	57 ± 23	4	8.3 ± 2.7	1	0.69 ± 0.28	0	0.08 ± 0.06
3	0	0	1	$m_{\ell\ell} > 105 (\text{GeV})$	180	200 ± 34	63	66 ± 12	13	10 ± 2.5	2	1.1 ± 0.40	0	0.16 ± 0.09
3	0	1	1	$m_{\ell\ell} > 105 (\text{GeV})$	17	17 ± 6.5	36	35 ± 14	7	7.4 ± 2.5	0	0.54 ± 0.23	0	0.08 ± 0.05
3	1	0	0	_	1194	1300 ± 330	289	290 ± 130	26	28 ± 12	2	2.6 ± 1.3	0	0.23 ± 0.20
3	1	1	0	-	316	330 ± 160	410	480 ± 240	46	58 ± 28	2	3.9 ± 2.0	0	0.46 ± 0.32
3	1	0	1	on-Z	49916	49000 ± 15000	2099	2700 ± 770	108	70 ± 17	9	6.0 ± 1.6	0	0.33 ± 0.18
3	1	1	1	on-Z	795	830 ± 230	325	280 ± 74	17	17 ± 4.8	1	1.8 ± 0.64	0	0.30 ± 0.14
3	1	0	1	$m_{\ell\ell} < 75 (\text{GeV})$	10173	9200 ± 2700	290	280 ± 72	21	11 ± 3.5	1	0.97 ± 0.44	0	0.04 ± 0.06
3	1	1	1	$m_{\ell\ell} < 75 ({\rm GeV})$	297	290 ± 97	167	170 ± 87	14	12 ± 6.0	0	1.1 ± 0.74	0	0.06 ± 0.08
3	1	0	1	$m_{\ell\ell} > 105 (\text{GeV})$	1620	1700 ± 480	285	370 ± 96	21	23 ± 7.2	1	1.4 ± 0.61	0	0.22 ± 0.23
3	1	1	1	$m_{\ell\ell} > 105 ({\rm GeV})$	97	79 ± 36	169	190 ± 94	23	28 ± 14	1	2.2 ± 1.3	0	0.20 ± 0.18

Chris West, UCSB

Multijet resonances

- Select ≥6 jets with p_T>110 GeV
- Cut on triplet invariant mass and scalar p_T
- Require sphericity>0.4
- Fit triplet invariant mass distribution (with or without b)

Chris West, UCSB