

The pMSSM Interpretation of CMS 7 and 8 TeV Results

Sam Bein, CMS (Florida State University) SUS-15-010

make robust, comprehensive statements about SUSY

parameter estimation in case of discovery

guide the next generation of searches

CMS PAS SUS-13-020 Phenomenological MSSM interpretation of the CMS 7 and 8 TeV results

Charge

The Phenomenological (p)MSSM A realization of the R-parity conserving MSSM with *no new sources of CP violation *no flavor changing neutral currents *1st and 2nd generation squarks are degenerate *lightest SUSY particle is the neutralino

19 Parameters

Gaugino mass parameters M_1 , Higgs sector parameters tan(k)10 sfermion mass parameters nTrilinear couplings A_t , A_b , and

$$M_2$$
, and M_3
3), μ , and m_A
 n_i
 A_{τ}

Strategy

- incorporate relevant prior information (10 previous results)
- scan parameter space with (20,000,000 points)

generate events for

(7200 points)

draw conclusions in a probabilistic framework

Parameter Ranges $-3 \text{ TeV} \leq M_1, M_2 \leq 3 \text{ TeV}$ $0 \leq M_3 \leq 3 \text{ TeV}$ $-3 \,\mathrm{TeV} \le \mu \le 3 \,\mathrm{TeV}$ $0 \leq m_A \leq 3 \,\text{TeV}$ $2 \leq \tan \beta \leq 60$ $0 \leq \tilde{Q}_{1,2}, \tilde{U}_{1,2}, \tilde{D}_{1,2}, \tilde{L}_{1,2}, \tilde{E}_{1,2}, \tilde{Q}_3, \tilde{U}_3, \tilde{D}_3, \tilde{L}_3, \tilde{E}_3 \leq 3 \text{ TeV}$ $-7 \text{ TeV} \leq A_t, A_b, A_\tau \leq 7 \text{ TeV},$

CMS SUSY Analyses

Analysis

Hadronic HT + MHT search Hadronic HT + MET + b-jets Leptonic search for EW proc Hadronic HT + MHT search Hadronic M_{T2} search Hadronic HT + MET + b-jets Monojet searches Hadronic stop search Opposite sign di-lepton (OS (count experiment only) Like-sign di-leptoin (LS ll) s (only channels w/o 3rd lept Leptonic search for EW proc (only ss, 3l, and 4l channels)

	\sqrt{s} [TeV]	L [fb ⁻¹]
1 I	7	4.98
s search	7	4.98
d. of $\widetilde{\chi}^0, \widetilde{\chi}^{\pm}, \widetilde{l}$	7	4.98
l	8	19.5
	8	19.5
s search	8	19.4
	8	19.7
	8	19.4
5 ll) search	8	19.4
search	8	19.5
ton veto)		
d. of $\widetilde{\chi}^0, \widetilde{\chi}^{\pm}, \widetilde{l}$	8	19.5
)		

Combination smooths out fluctuations

Gluino

Squark $0.9 \overset{\times 10^{-3}}{\Box}$

 ${ ilde\chi}_1^{ ext{C}}$

Higgs to invisible suppresses

LSP vs Gluino

Higgsino

Dark Matter

relic density

spin-dependent

Convenient re-mapping of the Bayes factor: **Bayes factor:** $B_{10} = L(Data|H_1)/L(Data|H_0)$ **Z-signficiance**: $Z = sign(log(B_{10})) \sqrt{2} |log(B_{10})|$

Z <= -1.64 (excluded)

Non-excluded parameter space

Z > -1.64 (non-excluded)

Out of 7200 studied pMSSM points: SUSY searches

over 50% of the nonexcluded points have a total production cross section greater than 10 fb.

Non-excluded parameter space

~3,500 points have been excluded by direct CMS

Principal topologies

Idealized analysis

We establish a set of observables at the generator level:

jets: clustered ak5 gen particles **b-jets**: jets associated to a b-hadron leptons, photons: pT>5 GeV **HT**: scalar sum of the hadronic activity **MET**: magnitude of the vector sum of the visible particles

Parallel Coordinates

$\tilde{q}(q \to qW\tilde{\chi}_1^0)\tilde{q}(q \to qW\tilde{\chi}_1^0)$

 $\tilde{\chi}^0_1\tilde{\chi}^0_1$

 $\tilde{b}(\to b\tilde{\chi}_1^0)\tilde{b}(\to b\tilde{\chi}_1^0)$ $\tilde{\chi}^{\pm}(\to W\tilde{\chi}_1^0)\tilde{\chi}_2^0(\to \gamma/Z/h\tilde{\chi}_1^0)$ $\tilde{\chi}^{\pm} (\to W \tilde{\chi}_1^0) \tilde{\chi}_1^0$ $\tilde{q}(\rightarrow q \tilde{\chi}_1^0) \tilde{q}(\rightarrow q \tilde{\chi}_1^0)$

Samuel Bein, CMS (FSU)

10 fb $\sigma_{tot}^{8 \text{ TeV}}$ topology

Fiducial cross section

Calculated once per model point

$\sigma_{f}^{SUSY} = \sigma_{tot}^{SUSY} A_{\bigstar}$ fraction of events passing set of event level criteria

Conclusion

- we have investigated the impact of a set of 7 and 8 TeV SUSY searches on the pMSSM
- gluino masses below 500 GeV are excluded
- low mass LSPs cannot be ruled out
- the topological composition of the non-excluded points has been evaluated
- fiducial cross section studies suggest new analysis strategies

CMS PAS SUS-13-020

Phenomenological MSSM interpretation of the CMS 7 and 8 TeV results

Backup

Posterior Density

 Expected signal counts estimated by simulation for each signal region

 $p(\theta|Data^{CMS}) \propto L(Data^{CMS}|\theta)\Pi(\theta)$

Determinants of the Prior

i	Observable	Constraint	Likelihood function	
	$\mu_j(\theta)$	$D_j^{ m preCMS}$	$L(D_j^{ ext{preCMS}} \mu_j(heta))$	
1	$BR(b ightarrow s \gamma)$	$(3.55 \pm 0.23^{ m stat} \pm 0.24^{ m th} \pm 0.09^{ m sys}) imes 10^{-4}$	Gaussian	
2a	$BR(B_s \to \mu\mu)$	observed CLs curve from	d(1-CLs)/dx	
2b	$BR(B_s \to \mu\mu)$	$3.2^{+1.5}_{-1.2} imes 10^{-9}$	2-sided Gaussian	
3	$R(B_u \to \tau \nu)$	1.63 ± 0.54	Gaussian	
4	Δa_{μ}	$(26.1 \pm 8.0^{ m exp} \pm 10.0^{ m th}) imes 10^{-10}$	Gaussian	
5	m_t	$173.3 \pm 0.5^{\rm stat} \pm 1.3^{\rm sys}$ GeV	Gaussian	
6	$m_b(m_b)$	$4.19^{+0.18}_{-0.06} \text{ GeV}$	Two-sided Gaussian	
7	$\alpha_s(M_Z)$	0.1184 ± 0.0007	Gaussian	
8a	m_h	pre-LHC: $m_h^{low} = 112$	1 if $m_h \ge m_h^{low}$	
			0 if $m_h < m_h^{low}$	
8b	m_h	LHC: $m_h^{low} = 120, \ m_h^{up} = 130$	1 if $m_h^{low} \le m_h \le m_h^{up}$	
			0 if $m_h < m_h^{low}$ or $m_h > m_h^{up}$	
9	sparticle	LEP	1 if allowed	
	masses	via micrOMEGAs	0 if excluded	
10	prompt $\tilde{\chi}_1^{\pm}$	$c au(ilde{\chi}_1^{\pm}) < 10 \ \mathrm{mm}$	1 if allowed	
			0 if excluded	
²⁵ <u>Samuel Bein, CMS (Florida State Universi</u>				

