Latest Results on Heavy Neutrino Searches with CMS

John Almond (Seoul National University) On behalf of the CMS collaboration

SUSY15 @ Lake Tahoe , August 23-29, 2015

- Neutrinos oscillate between all three flavours.
 - At least two massive neutrinos
- First conclusive experimental evidence for BSM physics.
- Sum of light neutrino masses < 0.23 eV from cosmology.
- Small neutrino mass can be naturally explained by the SeeSaw mechanism with heavy Majorana neutrinos.
- Some theories with heavy neutrinos can also provide a Dark Matter candidate. 2

Searches For Heavy Neutrinos at CMS

- Small neutrino mass -> heavy neutrino (N_R) by "SeeSaw"
 Several models predict TeV scale heavy neutrinos.
- If heavy neutrinos exist at TeV scale we should be able to see them at the LHC.
- CMS and ATLAS have performed searches for heavy neutrinos in a number of models.

Heavy Neutrino production at the LHC Type-1 Seesaw EX0-12-057 EX0-14-014

- This is the simplest model that allows for heavy neutrinos $\ensuremath{\mathsf{N}}\xspace$.
- Assume N has no new interactions.
- N mixes with SM leptons via mixing angle V_{IN} .
 - Best channel to search for this is s-channel using di-lepton final state:
 - Majorana neutrino can decay into positive or negative lepton.

- cross section depends on $|V_{IN}|^2 \overline{q}$

q q W^+ V_{eN} q^+ $q^$ $q^$ q

Analysis sets limit on cross section and mixing angles $|V_{\ensuremath{\mathbb{N}}}|^2$

Previous Constraints on Mixing

 Strong limits on |V_{eN}|² from neutrino-less double beta decay experiments (arXiv:hep-ph/0412300):

$$\left|\sum_{j=1}^{n} V_{eN_{j}}^{2} \frac{1}{m_{N_{j}}}\right| < 5 \times 10^{-8} \,\mathrm{GeV^{-1}},$$

- The neutrino-less double beta decay:
 - (1) a long-range interaction
 - (2) a short-range interaction
- But the limits were extracted assuming (2) is dominant.
- At LHC, heavy N production (3) is short-range only.

Previous Constraints on Mixing

- Strong limits on |V_{eN}|² from neutrino-less double beta decay experiments (arXiv:hep-ph/0412300):
- Strong limits for ee (and $\mu\mu)$ for $M_N < 90$ GeV by LEP
- CMS and ATLAS set limits with 7 TeV:

$$\left|\sum_{j=1}^{n} V_{eN_j}^2 \frac{1}{m_{N_j}}\right| < 5 \times 10^{-8} \, \mathrm{GeV^{-1}},$$

Heavy Neutrinos in the Left-Right Symmetric Model at LHC EXO-13-008

- A high energy gauge theory that can explain parity violation in the weak sector.
- Included 3 TeV scale gauge bosons (2W_R and Z')
- Naturally introduces righthanded heavy neutrinos N.
- Promising signal at the LHC.

Analysis sets limit on Mass of W_R and N.

Previous Constraints on M_N and M_{WR}

- ATLAS and CMS set limits with 7 TeV.
- CMS excluded masses up to 2.5 TeV for $M_{\ensuremath{\mathsf{WR}}}$
- and 1.4 TeV for M_{N} for certain values of M_{WR}

8 TeV Analyses At CMS

9

Searches in Minimal Type-1 Seesaw at 8 TeV

• Search for resonant s-channel production of a heavy Majorana neutrino.

Remarks:

- Use same-sign events due to Z+jet background.

Challenges:

 Daughter particles can be very soft: Main issue is understanding background from misidentified leptons from multi-jet QCD events.

10

Understand charge mis-measurement rate for electron: Z+jet bkgd

Analysis Strategy for 8 TeV

Two main regions can be distinguished across the neutrino mass scan for all three channels:

- 1) $M_N < M_W$ GeV. Low-Mass Signal Region
- 2) $M_N > M_W$ GeV. High-Mass Signal Region
- In case 1 the first W [1] is real and the second W [2] is virtual.
 - $M(IIjj) = M_W$
- In case 2 the first W [1] is virtual and the second W [2] is real.

11

• $M(jj) = M_W$

Event Selection

Preselection

- Dilepton trigger (17/8 GeV)
- 2 same-sign leptons**
- njet >= 2
- veto third looser lepton

**Very Tight cuts on lepton: Isolation Impact parameter

Low-Mass and High-Mass selection (on top of preselection) :

12

Region	₽ _T (GeV)	$m(\ell^{\pm}\ell^{\pm}jj)$ (GeV/c ²)	$m(\ell^{\pm}\ell^{\pm})$ (GeV/c ²)	m(jj) (GeV/c ²)	$p_{\rm T}^{\rm j_1}$ (GeV/c)	
Low-Mass	< 30	< 200	> 10	< 120	> 20	L higt voto
High-Mass	< 35	> 80	> 15	50 - 110	> 30	

- Low-mass has soft final state particles.
- Two jets chosen such that:
 - Low-Mass : M(IIjj) closest to M_W
 - High-Mass : M(jj) closest to M_W

control regions

- reverse the b-jet veto
- place a MET > 50 GeV.
- Events with 1 jet (m(II) > 100 GeV)

Backgrounds

Background	Estimation Method
Charge-flip	Data + MC
SM irreducible	MC
Misidentified leptons	Data

- Muon charge-flip bkg. is considered negligible
- Misidentified lepton background the largest

19.7 fb⁻¹ (8 TeV)

Systematics

Main systematic is from misidentified leptons bkd.

μμ = 28%, eμ= 35%, ee= 40%

MC (Prompt) Systematic: Determined for low and high-mass:

- Low Mass = ~ 20 % High Mass = ~ 18 %
- Main systematic is from cross section: ~15%

Signal Systematic:

- Low Mass = 15-18% High Mass = 7-19 %
- JET uncertainty and Q² is dominant

Entries / 40 GeV

Signal Optimisation and Results

- Further optimisation done per mass point using punzi** figure of merit using (**new for 8 TeV**):
 - pt leptons
 - m(lljj)

-

- m(l₂jj) (for ee and eµ channels)
- Table for µµ channel shown:

m _N	$m(\mu^{\pm}\mu^{\pm}jj)$	p_{T1}	p_{T2}	Acceptance	-	m_N	SM Bkgd.	Misid. Bkgd.	Total Bkgd.	Nobs
(GeV)	(GeV)	(GeV)	(GeV)	(%)		(GeV)	-			
40	80	20	15	0.69		40	$3.0\pm0.4\pm0.6$	$6.7\pm0.9\pm1.9$	$9.8\pm1.0\pm2.0$	7
50	80	20	15	0.80	Low	50	$3.0\pm0.4\pm0.6$	$6.7\pm0.9\pm1.9$	$9.8\pm1.0\pm2.0$	7
60	80	20	15	0.64		60	$3.0\pm0.4\pm0.6$	$6.7\pm0.9\pm1.9$	$9.8\pm1.0\pm2.0$	7
70	80	20	15	0.26	VIASS	70	$3.0\pm0.4\pm0.6$	$6.7\pm0.9\pm1.9$	$9.8\pm1.0\pm2.0$	7
80	80	20	15	1.2		80	$3.0\pm0.4\pm0.6$	$6.7\pm0.9\pm1.9$	$9.8\pm1.0\pm2.0$	7
90	110	20	15	1.2		90	$8.7\pm0.7\pm1.7$	$12.6 \pm 1.1 \pm 3.5$	$21.3 \pm 1.3 \pm 3.9$	19
100	120	20	15	4.7		100	$8.7\pm0.7\pm1.7$	$11.7\pm1.0\pm3.3$	$20.4\pm1.2\pm3.7$	19
125	140	25	20	11		125	$7.9\pm0.6\pm1.5$	$5.9\pm0.7\pm1.6$	$13.8\pm0.9\pm2.2$	8
150	160	35	25	13		150	$6.4\pm0.5\pm1.2$	$3.6\pm0.6\pm1.0$	$9.9\pm0.8\pm1.6$	7
175	200	45	30	15	High	175	$4.4\pm0.4\pm0.8$	$1.6\pm0.4\pm0.5$	$6.0\pm0.6\pm1.0$	7
200	220	50	35	16	riigii	200	$3.4\pm0.4\pm0.7$	$0.8\pm0.3\pm0.2$	$4.2\pm0.5\pm0.7$	5
250	270	75	35	17	Mass	250	$1.9\pm0.3\pm0.3$	$0.6\pm0.2\pm0.2$	$2.5\pm0.3\pm0.4$	3
300	290	100	45	15	IVIGOU	300	$0.9\pm0.2\pm0.2$	$0.1\pm0.2\pm0.0$	$1.0\pm0.3\pm0.2$	1
350	290	100	45	16		350	$0.9\pm0.2\pm0.2$	$0.1\pm0.2\pm0.0$	$1.0\pm0.3\pm0.2$	1
400	290	100	45	15		400	$0.9\pm0.2\pm0.2$	$0.1\pm0.2\pm0.0$	$1.0\pm0.3\pm0.2$	1
500	290	100	45	12		500	$0.9\pm0.2\pm0.2$	$0.1\pm0.2\pm0.0$	$1.0\pm0.3\pm0.2$	1
					V					

NEW Limits on cross section (approved this week)

- No excess is seen beyond expected background.
- 95% CL limits on the cross section are set.
- Limits are obtained by counting number of events passing signal selection.
- Limits calculated using CLs method.
- First direct limits on eµ cross section.

Limit on coupling $IV_{IN}V^*_{I'N}I$

- Limits significantly improve previous direct searches for $m_N > 90$ GeV.
- Muon channel comparable with LEP.
- More than an order of magnitude better than 7 TeV for lowest masses.

Searches in Left Right Symmetric Model at CMS

EXO-13-008

eejj candidate:

M(eejj) = 3228 GeV M(ee) =639 GeV M(jj) = 2553 GeV

Searches in Left Right Symmetric Model at CMS at 8 TeV

- Included electron channel for 8 TeV.
- Same final state as Seesaw type-1 BUT very different kinematics.
- For M_N << M_{WR} jets and leptons from N overlap in detector since N is boosted. Standard isolation kills signal.

Event Selection

2 *isolated leptons of same flavour: e or μ . No charge requirement on leptons (OS +SS) Leading(trailing) lepton P_T > 60(40) GeV Njets >= 2 : Jet P_T > 40 GeV

* signal efficiency drops as M_N/M_{WR} decreases since N becomes boosted

Plots use selection [1]

EPJ C74 (2014) 3149

 $\begin{array}{ll} M(II) > 200 \; GeV & (remove \; Z \; bkg) \\ M(IIjj) \; (i.e. \; M_{WR})) > 600 \; GeV \end{array}$

Backgrounds and Systematics

Dominant Backgrounds

Background	Shape	Norm.
tt	Data	MC
DY+jets	MC	Data
VV + singletop	MC	NLO/NNLO

- tt: use eµ events to get shape.
- DY MC norm. to data in 60 < M(II) < 120 GeV
- Background from misidentified leptons found to be negligible.

Systematic:

- Leading systematic is from background shape
- PDF uncertainty largest for signal

Limits in the LRSM

An interesting excess in electron channel:

- Local significance, 2.8σ effect at M(eejj) ~2.1 TeV.
- Not consistent with LRSM model
- Excess in OS events: ATLAS looked at SS only.

Limits in the LRSM

- Shape of reconstructed W_R is used to calculate limit.
- Used multibin CL_S limit setting technique.
- Exclusion in M_N and M_{WR} plane:
 - M(WR) < 3.00 (2.87) TeV for muon (electron) channel.
 - CMS has best sensitivity at 8 TeV.

Conclusion

- CMS have searched for heavy neutrinos in events with 2 leptons, two jets and no missing transverse energy.
- No excess seen in the data, 95% CL upper limits have been set:
 - LRSM: on the mass of heavy neutrino (up to 2 TeV) and W_R mass (up to 3.0 TeV).
 - SeeSaw type-1: on the coupling of heavy neutrino and lepton vs m_N .
 - ee and $\mu\mu$ channel: most stringent direct limits to date for $m_N > 90$ GeV.
 - $e\mu$ channel: first direct limits set for $m_N > 90$ GeV.
- 13 TeV data taking has started. Exciting times ahead.

Backup

19.7 fb⁻ (8 TeV)

ee channel

N_R Mass	$m(e^{\pm}e^{\pm}jj)$	$p_{\mathrm{T}}^{e_1}$	$p_{\mathrm{T2}}^{e_2}$	$m(e_2jj)$	$m(e^{\pm}e^{\pm})$	Acc.*Eff.
$({\rm GeV/c^2})$	$({\rm GeV/c^2})$	$({\rm GeV/c})$	$({\rm GeV/c})$	$({\rm GeV/c^2})$	$({\rm GeV/c^2})$	(%)
40	80 - 160	> 20	> 15	< 120	10 - 60	0.19
50	80 - 160	> 20	> 15	< 120	10 - 60	0.26
60	80 - 160	> 20	> 15	< 120	10 - 60	0.22
70	80 - 160	> 20	> 15	< 120	10 - 60	0.09
80	80 - 160	> 20	> 15	< 120	10 - 60	0.32
90	> 120	> 20	> 15	60 - 120	> 15	0.46
100	> 120	> 20	> 15	80 - 120	> 15	1.9
125	> 140	> 25	> 25	105 - 145	> 15	4.2
150	> 195	> 40	> 25	125 - 175	> 15	6.5
175	> 235	> 45	> 30	155 - 200	> 15	6.4
200	> 280	> 65	> 40	160 - 255	> 15	8.4
250	> 300	> 110	> 40	-	> 15	11
300	> 320	> 120	> 40	-	> 15	14
350	> 360	> 120	> 40	-	> 15	16
400	> 360	> 120	> 40	-	> 15	17
500	> 360	> 120	> 40	-	> 15	17

eµ channel

N_R Mass	$m(e^{\pm}\mu^{\pm}jj)$	$p_{\mathrm{T}}^{\ell_1}$	$p_{\mathrm{T}}^{\ell_2}$	$m(\ell_2 jj)$	Acc. * Eff.
$({ m GeV}/c^2)$	(GeV/c^2)	$({ m GeV}/c)$	$({ m GeV}/c)$	(GeV/c^2)	(%)
40	80 - 150	> 20	> 15	-	0.39
50	80 - 150	> 20	> 15	-	0.46
60	80 - 150	> 20	> 15	-	0.38
70	80 - 150	> 20	> 15	-	0.14
80	80 - 150	> 20	> 15	-	0.58
90	> 120	> 40	> 15	< 130	0.57
100	> 130	> 40	> 30	< 135	1.7
125	> 140	> 40	> 30	< 160	5.2
150	> 150	> 45	> 30	< 230	9.5
175	> 170	> 60	> 35	< 240	11
200	> 200	> 75	> 35	< 330	12
250	> 260	> 80	> 40	< 390	16
300	> 310	> 110	> 40	< 490	16
350	> 360	> 110	> 40	< 550	16
400	> 380	> 120	> 40	< 600	16
500	> 380	> 120	> 40	< 700	14

N_R Mass	SM Bkgd.	Misid. Lep. Bkgd.	Mismeas. Charge Bkgd.	Tot. Bkgd.	Nobs
$({\rm GeV}/c^2)$					
40	$0.8 \pm 0.2 \pm 0.1$	$7.5 \pm 2.0 \pm 3.0$	$0.3 \pm 0.0 \pm 0.1$	$8.6 \pm 2.0 \pm 3.0$	11
50	$0.8 \pm 0.2 \pm 0.1$	$7.5 \pm 2.0 \pm 3.0$	$0.3 \pm 0.0 \pm 0.1$	$8.6 \pm 2.0 \pm 3.0$	11
60	$0.8 \pm 0.2 \pm 0.1$	$7.5 \pm 2.0 \pm 3.0$	$0.3 \pm 0.0 \pm 0.1$	$8.6 \pm 2.0 \pm 3.0$	11
70	$0.8 \pm 0.2 \pm 0.1$	$7.5 \pm 2.0 \pm 3.0$	$0.3 \pm 0.0 \pm 0.1$	$8.6 \pm 2.0 \pm 3.0$	11
80	$0.8 \pm 0.2 \pm 0.1$	$7.5 \pm 2.0 \pm 3.0$	$0.3 \pm 0.0 \pm 0.1$	$8.6 \pm 2.0 \pm 3.0$	11
90	$2.8 \pm 0.3 \pm 0.3$	$13.4 \pm 2.2 \pm 5.4$	$1.7 \pm 0.0 \pm 0.2$	$17.8 \pm 2.2 \pm 5.4$	23
100	$2.6 \pm 0.3 \pm 0.3$	$11.0 \pm 2.1 \pm 4.5$	$1.6 \pm 0.0 \pm 0.2$	$15.3 \pm 2.1 \pm 4.5$	23
125	$3.3\pm0.4\pm0.4$	$6.1 \pm 1.3 \pm 2.4$	$1.7 \pm 0.0 \pm 0.2$	$11.1 \pm 1.3 \pm 2.5$	11
150	$3.3 \pm 0.4 \pm 0.4$	$4.7 \pm 1.1 \pm 1.9$	$1.9 \pm 0.1 \pm 0.2$	$9.9 \pm 1.2 \pm 1.9$	7
175	$2.0\pm0.3\pm0.3$	$0.9 \pm 0.5 \pm 0.4$	$1.1 \pm 0.1 \pm 0.1$	$4.0 \pm 0.6 \pm 0.5$	3
200	$1.3 \pm 0.2 \pm 0.2$	$2.0 \pm 1.3 \pm 0.8$	$1.0 \pm 0.0 \pm 0.1$	$4.3\pm1.3\pm0.8$	3
250	$1.1 \pm 0.2 \pm 0.2$	$1.8 \pm 1.4 \pm 0.8$	$0.8 \pm 0.0 \pm 0.1$	$3.8 \pm 1.4 \pm 0.7$	4
300	$0.8 \pm 0.2 \pm 0.1$	$1.2 \pm 1.3 \pm 0.5$	$0.7 \pm 0.0 \pm 0.1$	$2.6 \pm 1.3 \pm 0.5$	4
350	$0.6 \pm 0.2 \pm 0.1$	$1.2 \pm 1.3 \pm 0.5$	$0.6 \pm 0.0 \pm 0.1$	$2.4 \pm 1.3 \pm 0.5$	4
400	$0.6 \pm 0.2 \pm 0.1$	$1.2 \pm 1.3 \pm 0.5$	$0.6 \pm 0.0 \pm 0.1$	$2.4 \pm 1.3 \pm 0.5$	4
500	$0.6 \pm 0.2 \pm 0.1$	$1.2 \pm 1.3 \pm 0.5$	$0.6 \pm 0.0 \pm 0.1$	$2.4 \pm 1.3 \pm 0.5$	4

N_R Mass	SM Bkgd.	Misid. Lep. Bkgd.	Tot. Bkgd.	N _{obs}
(GeV/c^2)				
40	$3.1 \pm 0.3 \pm 0.5$	$30.6 \pm 3.0 \pm 10.4$	$33.7 \pm 3.0 \pm 10.4$	33
50	$3.1 \pm 0.3 \pm 0.5$	$30.6 \pm 3.0 \pm 10.4$	$33.7 \pm 3.0 \pm 10.4$	33
60	$3.1\pm0.3\pm0.5$	$30.6 \pm 3.0 \pm 10.4$	$33.7 \pm 3.0 \pm 10.4$	33
70	$3.1\pm0.3\pm0.5$	$30.6 \pm 3.0 \pm 10.4$	$33.7 \pm 3.0 \pm 10.4$	33
80	$8.1 \pm 0.6 \pm 1.2$	$17.2 \pm 1.8 \pm 5.9$	$25.3 \pm 1.9 \pm 6.0$	29
90	$6.6 \pm 0.6 \pm 1.0$	$13.4 \pm 1.4 \pm 4.6$	$20.1 \pm 1.6 \pm 4.6$	25
100	$6.7 \pm 0.6 \pm 1.1$	$8.1 \pm 1.0 \pm 2.7$	$14.8 \pm 1.2 \pm 2.9$	20
125	$7.2 \pm 0.6 \pm 1.2$	$5.1 \pm 0.9 \pm 1.7$	$12.3 \pm 1.1 \pm 1.9$	17
150	$8.2 \pm 0.6 \pm 1.2$	$5.6 \pm 0.9 \pm 1.9$	$13.8 \pm 1.1 \pm 2.3$	16
175	$5.6 \pm 0.5 \pm 0.8$	$3.6 \pm 0.7 \pm 1.2$	$9.3\pm0.9\pm1.5$	11
200	$3.7\pm0.4\pm0.6$	$2.5 \pm 0.6 \pm 0.8$	$6.2 \pm 0.7 \pm 1.0$	7
250	$3.1\pm0.4\pm0.5$	$1.5 \pm 0.5 \pm 0.5$	$4.7 \pm 0.6 \pm 0.6$	7
300	$1.4\pm0.2\pm0.2$	$0.7\pm0.3\pm0.2$	$2.2\pm0.4\pm0.3$	4
350	$0.9\pm0.2\pm0.1$	$0.7\pm0.3\pm0.2$	$1.6\pm0.4\pm0.3$	4
400	$0.8 \pm 0.2 \pm 0.1$	$0.7\pm0.3\pm0.2$	$1.6\pm0.4\pm0.3$	4
500	$0.8 \pm 0.2 \pm 0.1$	$0.7\pm0.3\pm0.2$	$1.6\pm0.4\pm0.3$	4

Channel		Misid. Bkgd.	Mismeas. Charge Bkgd.	SM Bkgd.
		(%)	(%)	(%)
ee	Systematics for $m_{\rm N}=100~{\rm GeV}/c^2$ selection	99.4	0.2	0.4
	Systematics for $m_{\rm N} = 500 \text{ GeV}/c^2$ selection	95.2	2.0	2.8
eμ	Systematics for $m_{\rm N}=100~{\rm GeV}/c^2{\rm selection}$	90.7	0.0	9.3
	Systematics for $m_{\rm N} = 500 \text{ GeV}/c^2$ selection	84.5	0.0	15.5

	(ee	($e\mu$
Source	Signal	SM Bkgd.	Signal	SM Bkgd.
	(%)	(%)	(%)	(%)
Simulation				
SM cross section		9-25 [9-25]	-	9-25 [9-25]
Jet energy scale	6-8 [1-3]	5 [7]	4-8 [1-2]	8 [7]
Jet energy resolution	3-7 [2-3]	10 [7]	3-10 [2-3]	$10 \ [6]$
Event pileup	2-3 [0-2]	4 [1]	2-3 [0-2]	3 [2]
Unclustered energy	1-3 [1-2]	4[5]	1-3 [1-2]	5 [1]
Integrated luminosity	2.6 [2.6]	2.6 [2.6]	2.6 [2.6]	2.6 [2.6]
Electron selection	2 [2]	2 [2]	2 [2]	2 [2]
Trigger selection	6 [6]	6[6]	6 [6]	6[6]
b tagging	0-1 [1-2]	2[1]	0-1 [1-2]	1 [1]
PDF (shape)	$2.0 \ [2.0]$	—	2.0 [2.0]	_
PDF (rate)	3.5 [3.5]	—	3.5 [3.5]	_
Renormalization	<u>9 10 [1 6]</u>		<u>8 10 [1 6]</u>	
/Factorization scales	0-10 [1-0]		0-10 [1-0]	
Signal MC statistics	5-15 [1-6]	_	3-7 [1-3]	_
Data-Driven				
Misidentified leptons		40 [40]	_	35 [35]
Mismeasured charge	—	12 [12]	_	12 [12]

Limits in the LRSM

- Limits slightly improved when assuming N_I are degenerate.
- Muon and electron channels are combined assuming m_{N} = 1/2 M_{WR}
- Limit: M_{WR} < 3.01 (3.10) TeV for observed(expected)

SeeSaw Mechanism

 Neutrino Majorana mass terms can be added to SM Lagrangain 'for free',

$$M_{\nu} \approx \frac{m_{\rm Dirac}}{M_N}$$

- There are frameworks that allow for smaller heavy neutrino mass.
- One attractive model, minimal Type-1 seesaw (mT1SM).
 - No additional gauge bosons
 - TeV scale neutrino

[Pilaftsis '92; Kersten, Smirnov '07; Ibarra, Molinaro, Petcov '10; Mitra, Senjanović, Vissani '11; ...]

- and frameworks that embed the neutrino mass scale into a more fundamental theory:
- Left-Right Symmetric Model (LRSM) which adds a chiral SU2 symmetry to SM
 - Introduces 3 new gauge bosons
 - TeV scale neutrinos

$$m_{
u}^{\text{light}} \sim rac{m_e^2}{m_N} \sim 0.1 \text{eV}$$

Type-3 SeeSaw: Heavy N production

- · Type 3
 - Production of $\Sigma^{0, \Sigma^{+/-}}$ via s-channel W*
 - Trilepton final state

Limits in Type-3 seesaw

EXO-14-001

Additional plots for LRSM EXO-13-008

Why Look For Heavy Neutrinos?

Small neutrino mass -> heavy neutrino (NR) by "SeeSaw"

Why Look For Heavy Neutrinos?

- Neutrinos oscillate between all three flavours.
 - At least two massive neutrinos
- First conclusive experimental evidence for BSM physics.
- Sum of light neutrino masses < 0.3 eV from cosmology.
- Small neutrino mass can be naturally explained by the SeaSaw mechanism with heavy Majorana neutrinos.
- Heavy neutrinos can also provide a Dark Matter candidate.

ĎZ 2

SeeSaw Mechanism

 Neutrino Majorana mass terms can be added to SM Lagrangain 'for free',

$$M_{\nu} \approx \frac{m_{\rm Dirac}}{M_N}$$

• Normally means for M_v that $M_N >> \text{TeV}$ (i.e., not interesting at the LHC)

There are frameworks that allow for smaller heavy neutrino mass.

- One attractive model, minimal Type-1 seesaw (mT1SM).
 - No additional gauge bosons
 - TeV scale neutrino

[Pilaftsis '92; Kersten, Smirnov '07; Ibarra, Molinaro, Petcov '10; Mitra, Senjanović, Vissani '11; ...]

and frameworks that embed the neutrino mass scale into a more fundamental theory:

- Left-Right Symmetric Model (LRSM) which adds a chiral SU2 symmetry to SM
 - Introduces 3 new gauge bosons
 - TeV scale neutrinos

$$m_{
u}^{\text{light}} \sim rac{m_e^2}{m_N} \sim 0.1 \text{eV}$$