Dilepton constraints in the Inert Doublet Model from Run 1 of the LHC

G. Belanger, B. Dumont, A. Goudelis, B. Herrmann, SK, D. Sengupta

arXiv:1503.07367

SUSY 2015, Aug 23-29, Lake Tahoe, California

The Inert Doublet Model

 In the IDM, the SM is extended by the addition of a second scalar, Φ, transforming as a doublet under SU(2)_L. This Φ is odd under a new discrete Z₂ symmetry.

$$H = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}} \left(v + h + iG^0 \right) \end{pmatrix}, \ \Phi = \begin{pmatrix} H^+ \\ \frac{1}{\sqrt{2}} \left(H^0 + iA^0 \right) \end{pmatrix}$$

• Scalar potential

$$V_0 = \mu_1^2 |H|^2 + \mu_2^2 |\Phi|^2 + \lambda_1 |H|^4 + \lambda_2 |\Phi|^4 + \lambda_3 |H|^2 |\Phi|^2 + \lambda_4 |H^{\dagger} \Phi|^2 + \frac{\lambda_5}{2} \Big[(H^{\dagger} \Phi)^2 + \text{h.c.} \Big].$$

The Z₂ symmetry forbids mixing among the components of H and Φ and renders the lightest Z₂-odd particle stable. \rightarrow H⁰ or A⁰ can play the role of a **DM candidate**.

NB: all fermions couple to H, i.e. 2HDM Type-I Yukawa couplings

$$m_{h}^{2} = \mu_{1}^{2} + 3\lambda_{1}v^{2}$$

$$m_{H^{0}}^{2} = \mu_{2}^{2} + \lambda_{L}v^{2}$$

$$m_{A^{0}}^{2} = \mu_{2}^{2} + \lambda_{S}v^{2}$$

$$m_{H^{\pm}}^{2} = \mu_{2}^{2} + \frac{1}{2}\lambda_{3}v^{2}$$

$$\lambda_{L,S} = \frac{1}{2} \left(\lambda_3 + \lambda_4 \pm \lambda_5 \right)$$

DM annihilation channels

(taking H⁰ as the DM candidate)

DM annihilation channels

(taking H⁰ as the DM candidate)

Constraints on the model

• Stability of the EW vacuum

$$\begin{aligned} \lambda_1, \lambda_2 &> 0\\ \lambda_3 &> -2\sqrt{\lambda_1\lambda_2}\\ \lambda_3 &+ \lambda_4 - |\lambda_5| &> -2\sqrt{\lambda_1\lambda_2} \end{aligned}$$

- **Perturbativity** of all couplings and perturbative unitarity of S-matrix
- Oblique parameters S, T and U
- Neutralino and chargino searches at LEP impose $m_{A0} > 100 \text{ GeV}$ and $m_{H\pm} > m_W$.

green: points valid at the input scale $\Lambda = MZ$, red: points which remain valid up to $\Lambda = 10$ TeV, black: points valid up to the GUT scale of 10^{16} GeV

[Goudelis, Herrmann, Stal, 1303.3010]

Constraints on the model

- Relic density (vanilla picture of thermal DM)
 - low-mass regime (m_{H0} < m_w): relevant parameters are λL and the distance of m_{H0} from m_h/2
 - intermediate-mass region ($m_W < m_{H0} < 115$ GeV): relic density depends on m_{H0} and λL ,
 - high-mass regime: all parameters of the scalar potential except λ_2 drastically affect the DM relic abundance
- For m_{H0} ≤ m_h/2, BR(h→inv) < 12% at 95% CL implies λ_L < 6×10⁻³
- **Direct DM** searches eliminate $m_{H0} < 115$ GeV DM region apart from $m_{H0} \sim m_h/2$

green: points valid at the input scale $\Lambda = MZ$, red: points which remain valid up to $\Lambda = 10$ TeV, black: points valid up to the GUT scale of 10^{16} GeV

[Goudelis, Herrmann, Stal, 1303.3010] see also Ilnicka, Krawczyk, Robens, 1508.01671

LOP = lightest odd particle

Constraints on the model

- Relic density (vanilla picture of thermal DM)
 - low-mass regime (m_{H0} < m_w): relevant parameters are λL and the distance of m_{H0} from m_h/2
 - intermediate-mass region ($m_W < m_{H0} < 115$ GeV): relic density depends on m_{H0} and λL ,
 - high-mass regime: all parameters of the scalar potential except λ_2 drastically affect the DM relic abundance
- For m_{H0} ≤ m_h/2, BR(h→inv) < 12% at 95% CL implies λ_L < 6×10⁻³
- **Direct DM** searches eliminate $m_{H0} < 115$ GeV DM region apart from $m_{H0} \sim m_h/2$

green: points valid at the input scale $\Lambda = MZ$, red: points which remain valid up to $\Lambda = 10$ TeV, black: points valid up to the GUT scale of 10^{16} GeV

[Goudelis, Herrmann, Stal, 1303.3010]

see also Ilnicka, Krawczyk, Robens, 1508.01671

LOP = lightest odd particle

- All constraints coming from invisible Higgs decays or from direct detection experiments vanish in the limit $\lambda_{L} \rightarrow 0$.
- In the "vanilla picture" of the thermal history of the Universe, vanishing λ_L leads to an overabundance of DM. However, various possibilities exist to eventually dilute the DM density. [see e.g. Gelmini et al., hep-ph/0605016]
- Independent collider constraints are interesting, as they do not depend in any way upon astrophysical or cosmological assumptions.
 - How do LHC Run 1 results constrain the IDM ?

LHC signatures (assuming $m_{H^0} < m_{A^0}$)

- At the LHC, inert scalars can be pair-produced via virtual Z or W exchange (H⁺H⁻ also via γ)
- The unstable A⁰ or H[±] then decay into the H⁰ plus a Z or W
- Most promising signatures: SF or DF dileptons I⁺I⁻ + ET^{miss} (same flavor or different flavor)

E. Dolle et al., arXiv:0909.0394

$$q\bar{q} \to \tilde{\chi}_2^0 \tilde{\chi}_1^0 \qquad \tilde{\chi}_2^0 \to Z^{(*)} \tilde{\chi}_1^0 \\ \tilde{\chi}_1^{\pm} \to W^{\pm} \tilde{\chi}_1^0$$

LHC signatures (assuming m_{H0} < m_{A0})

- At the LHC, inert scalars can be pair-produced via virtual Z or W exchange (H⁺H⁻ also via γ)
- The unstable A⁰ or H[±] then decay into the H⁰ plus a Z or W
- Most promising signatures: SF or DF dileptons I⁺I⁻ + ET^{miss} (same flavor or different flavor)

- Both ATLAS + CMS have searched for opposite-sign dileptons + ET^{miss} at Run 1.
 While no interpretation was given for the IDM, note that
 - the SUSY equivalent of process (a) is $q\bar{q} \to \tilde{\chi}_2^0 \tilde{\chi}_1^0$ with $\tilde{\chi}_2^0 \to Z^{(*)} \tilde{\chi}_1^0$
 - process (b) resembles the signature of chargino-pair production $\tilde{\chi}_1^{\pm} \to W^{\pm} \tilde{\chi}_1^0$
 - **process** (c) is Zh production with $h \rightarrow inv.$; (also (a) can look like Zh, $h \rightarrow inv.$)
 - processes (c) and (d) are negligible, contribution from (b) is small.

LHC signatures (assuming

(assuming $m_{H^0} < m_{A^0}$)

- At the LHC, inert scalars can be pair-produced via virtual Z or W exchange (H⁺H⁻ also via γ)
- The unstable A⁰ or H[±] then decay into the H⁰ plus a Z or W
- Most promising signatures: SF or DF dileptons I⁺I⁻ + E_T^{miss} (same flavor or different flavor)

E. Dolle et al., arXiv:0909.0394

Both ATLAS + CMS have searched for opposite-sign dileptons + ET^{miss} at Run 1.
 While no interpretation was given for the IDM, note that

- the SUSY equivalent of process (a) is $q\bar{q} \to \tilde{\chi}_2^0 \tilde{\chi}_1^0$ with $\tilde{\chi}_2^0 \to Z^{(*)} \tilde{\chi}_1^0$
- process (b) resembles the signature of chargino-pair production $\tilde{\chi}_1^{\pm} \to W^{\pm} \tilde{\chi}_1^0$
- **process** (c) is Zh production with $h \rightarrow inv$.; (also (a) can look like Zh, $h \rightarrow inv$.)
- processes (c) and (d) are negligible, contribution from (b) is small.

Recasting $I^+I^- + E_T^{miss}$ analyses for the IDM

 Implemented 2 ATLAS dilepton analyses in the MA5 PAD (PAD = Public Analysis Database)

- SUSY-2013-11: Chargino, neutralino and slepton search [arXiv:1403.5294]

Various signal regions optimized for chargino, neutralino, slepton signals or mass regions; all leptonic signal regions regions require $|m_{\parallel} - m_Z| > 10 \text{ GeV}$, i.e. on-shell Z bosons are vetoed

- HIGG-2013-03: $ZH \rightarrow I^+I^-$ + inv. search [arXiv:1402.3244]

Requires $|m_{II} - m_Z| < 15 \text{ GeV}$; can be matched onto processes (c) and (d), and for $m_{A0} - m_{H0} > m_Z$ also onto (a)

Towards a public analysis database (PAD)

- Validated analysis codes, easy to check and to use for everybody.
- Can serve for the interpretation of the LHC results in a large variety of models.
- Convenient way of documentation; helps long-term preservation of the analyses performed by ATLAS and CMS.
- Modular approach, easy to extend, everybody who implements and validates an existing ATLAS or CMS analysis can publish it within this framework.
- Provides feedback to the experiments about documentation and use of their results. (The ease with which an experimental analysis can be implemented and validated may actually serve as a useful check for the experimental collaborations for the quality of their documentation.)

see also Jamie's talk on tools in the plenary session

MadAnalysis 5 Public Analysis Database for recasting LHC results

ATLAS analyses, 8 TeV

Analysis	Short Description	Implemented by	Code	Validation note
G→ATLAS-SUSY-2013-05 (published)	stop/sbottom search: 0 leptons + 2 b-jets	G. Chalons	⇔Inspire	G→PDF G→(figures)
G→ATLAS-SUSY-2013-11 (published)	EWK-inos, 2 leptons + MET	B. Dumont	⇔ Inspire	⇔PDF ⇔(source)
G→ATLAS-HIGG-2013-03 (published)	ZH->II+invisible	B. Dumont	⇔ Inspire	⇔PDF ⇔(source)
⇔ATLAS-EXOT-2014-06 (published)	mono-photons + MET	D. Barducci	⇔ Inspire	↔ PDF ↔ MadGraph cards
⇔ATLAS-SUSY-2014-10 (published)	2 leptons + jets + MET	B. Dumont	G→Inspire	⇔PDF ⇔(source)
⇔ATLAS-SUSY-2013-21 (published)	0 leptons + mono-jet/c-jets + MET	G. Chalons, D. Sengupta	G→ Inspire	⇔PDF ⇔(source)
⇔ATLAS-SUSY-2013-02 (published)	0 leptons + 2-6 jets + MET	G. Chalons, D. Sengupta	G→Inspire	G→ PDF

CMS analyses, 8 TeV

Analysis	Short Description	Implemented by	Code	Validation note
⇔CMS-SUS-13-011 (published)	stop search in the single lepton mode	B. Dumont, B. Fuks, C. Wymant	⇔Inspire [1]	G→ PDF G→ (source)
⇔CMS-SUS-13-012 (published)	gluino/squark search in jet multiplicity and missing energy	S. Bein, D. Sengupta	G→ Inspire	G→ PDF G→ (source)
G⇒CMS-SUS-13-016 (PAS)	search for gluinos using OS dileptons and b-jets	D. Sengupta, S. Kulkarni	G→ Inspire	G→ PDF G→ (source)

http://madanalysis.irmp.ucl.ac.be/wiki/PublicAnalysisDatabase

MadAnalysis 5 Public Analysis Database for recasting LHC results

ATLAS analyses, 8 TeV

Analysis	Short Description	Implemented by	Code	Validation note
G→ATLAS-SUSY-2013-05 (published)	stop/sbottom search: 0 leptons + 2 b-jets	G. Chalons ⊡Inspire G		G→PDF G→(figures)
⇔ATLAS-SUSY-2013-11 (published)	EWK-inos, 2 leptons + MET	B. Dumont	⇔Inspire	G→PDF G→(source)
⇔ATLAS-HIGG-2013-03 (published)	ZH->II+invisible	B. Dumont	⇔ Inspire	⇔PDF ⇔(source)
⇔ATLAS-EXOT-2014-06 (published)	mono-photons + MET	D. Barducci	⇔ Inspire	⇔ PDF ⇔ MadGraph cards
G→ATLAS-SUSY-2014-10 (pub	PDF ເ⇒(source)			
B ATLAS-SUSY-2013-21 (pub CVC	PDF ເ⇒(source)			
ATLAS-SUSY-2013-02 (pub can contribute it to the PAD (validation note required)				PDF

CMS analyses, 8 TeV

Analysis	Short Description	Implemented by	Code	Validation note
⇔ CMS-SUS-13-011 (published)	stop search in the single lepton mode	B. Dumont, B. Fuks, C. Wymant	⇔Inspire [1]	⇔ PDF ⇔ (source)
⇔CMS-SUS-13-012 (published)	gluino/squark search in jet multiplicity and missing energy	S. Bein, D. Sengupta	⇔ Inspire	G⇒ PDF G⇒ (source)
⇔CMS-SUS-13-016 (PAS)	search for gluinos using OS dileptons and b-jets	D. Sengupta, S. Kulkarni	⇔ Inspire	G⇒ PDF G⇒ (source)

http://madanalysis.irmp.ucl.ac.be/wiki/PublicAnalysisDatabase

Recast codes individually published on InSpire

Welcome to <u>INSPIRE</u>, the High Energy Physics information system. Please direct questions, comments or concerns to <u>feedback@inspirehep.net</u>.

HEP :: HEPNAMES :: INSTITUTIONS :: CONFERENCES :: JOBS :: EXPERIMENTS :: JOURNALS :: HELP

Information Citations (3)

Files

MadAnalysis 5 implementation of ATLAS-SUSY-2013-11: di-leptons plus MET

Dumont, Beranger (LPSC, Grenoble)

Cite as: (2014) authors, http://doi.org/10.7484/INSPIREHEP.DATA.HLMR.T56W.2

Description: This is the MadAnalysis 5 implementation of the ATLAS search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum with 20.3/fb of data at 8 TeV, to be used for re-interpretation studies.

Note: Information how to use this code as well as a detailed validation summary are available at http://madanalysis.irmp.ucl.ac.be/wiki/PhysicsAnalysisDatabase. The ATLAS analysis is documented at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2013-11/

Cite as: Dumont, B. (2014) MadAnalysis 5 implementation of ATLAS-SUSY-2013-11: di-leptons plus MET. doi: 10.7484/INSPIREHEP.DATA.HLMR.T56W.2

Recast codes individually published on InSpire

Welcome to <u>INSPIRE</u>, the High Energy Physics information system. Please direct questions, comments or concerns to <u>feedback@inspirehep.net</u>.

HEP :: HEPNAMES :: INSTITUTIONS :: CONFERENCES :: JOBS :: EXPERIMENTS :: JOURNALS :: HELP

Information Citations (3)

Files

MadAnalysis 5 implementation of ATLAS-SUSY-2013-11: di-leptons plus MET

Dumont, Beranger (LPSC, Grenoble)

Cite as: (2014) authors, http://doi.org/10.7484/INSPIREHEP.DATA.HLMR.T56W.2

Description: This is the MadAnalysis 5 implementation of the ATLAS search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum with 20.3/fb of data at 8 TeV, to be used for re-interpretation studies.

Note: Information how to use this code as well as a detailed validation summary are available at http://madanalysis.irmp.ucl.ac.be/wiki/PhysicsAnalysisDatabase. The ATLAS analysis is documented at https://atlas.web.cem.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2013-11/

Cite as: Dumont, B. (2014) MadAnalysis 5 implementation of ATLAS-SUSY-2013-11: di-leptons plus MET. doi: 10.7484/INSPIREHEP.DATA.HLMR.T56W.2

Export

each recasted analysis gets a DOI (digital document identifier) and is individually searchable and citable

BibTeX, EndNote, LaTeX(US), LaTeX(EU), Harvmac, MARC, MARCXML, NLM, DC

Recast codes individually published on InSpire

Recasting $I^+I^- + E_T^{miss}$ analyses for the IDM

- Implemented 2 ATLAS dilepton analyses in the MA5 PAD:
 - SUSY-2013-11: Chargino, neutralino and slepton search [arXiv:1403.5294]

Various signal regions optimized for chargino, neutralino or slepton signals/mass regions; all leptonic signal regions regions require $|m_{II} - m_Z| > 10$ GeV, i.e. on-shell Z bosons are vetoed

- HIGG-2013-03: $ZH \rightarrow I^+I^- + inv. search$ [arXiv:1402.3244]

Requires $|m_{II} - m_Z| < 15 \text{ GeV}$; can be matched onto (c) and (d), and for $m_{A0} - m_{H0} > m_Z$ also onto (a)

• The MadAnalysis 5 codes and detailed validation notes are **publicly available**

 Simulated signal in (m_{H0}, m_{A0}) plane for fixed m_{H±} and λ_L = 0

MadGraph5 + Feynrules + CalcHEP + Delphes3 + MadAnalysis5

• Background numbers taken from the experimental papers to compute CLs

^{10.7484/}INSPIREHEP.DATA.HLMR.T56W.2 10.7484/INSPIREHEP.DATA.RT3V.9PJK

Comments

- The Run 1 ATLAS searches exclude, at 95% CL, $m_{H0} < 35$ GeV for $m_{A0} \approx 100$ GeV.
- The limit becomes stronger for heavier A^0 , up to $m_{H^0} \approx 45-55$ GeV for $m_{A^0} \approx 140-145$ GeV (depending on m_{H^\pm})
- The m_{A⁰} dependence comes from the fact that the leptons from A⁰ → ZH⁰, Z→I⁺I⁻ are harder for heavier A⁰.
- m_{H±} dependence: Xsection is larger for lighter H[±], but decay leptons are very soft and don't pass the signal selection cuts. Also, A⁰ → WH[±] competes with A⁰ → ZH⁰, when kinematically allowed, reducing the signal.
- At Run 2 it should be possible to test the Higgs funnel region $m_{H^0} \approx m_h/2$.

To conclude

arXiv:1503.07367

- We recasted two Run 1 ATLAS analyses
 - dilepton + MET SUSY search (off-Z)
 - $ZH \rightarrow I^+I^-$ + inv. search (on-Z)

to obtain collider limits on inert scalars.

 Complementary to DM constraints, as they do not depend on astrophysical or cosmological assumptions.

The experimental analyses we recasted are not optimized for the IDM signal

Could improve sensitivity by exploiting angular separation of signal and backgrounds (cf. Dolle et al., 0909.0394)

→ Dedicated analysis at Run 2 would be highly interesting

Thanks to

Beranger Dumont, Andreas Goudelis, Dipan Sengupta

who did most of the work presented here.

Backup

couplings of the h⁰: SM-like at tree-level at loop-level: charged Higgs contribution to $h^0 \rightarrow \gamma \gamma$

from a global fit to the properties of the Higgs boson: [G. Bélanger, BD, U. Ellwanger, J. F. Gunion, S. Kraml, arXiv:1306.2941]

What is MadAnalysis 5?

E. Conte, B. Fuks, arXiv: 1309.7831

E. Conte, B. Fuks, G. Serret, arXiv: 1206.1599

- Public framework for analyzing Monte Carlo events
- Different levels of sophistication: partonic, hadronic, detector reconstructed
- Input formats: StdHep, HepMC, LHE, LHCO, Delphes ROOT files
- Emulation of detector response using DELPHES 3 (tuned version)
- Normal mode: intuitive commands typed in the Python interface human-readable output: HTML and LaTeX
- Expert mode: C++/ROOT programming within the SampleAnalyzer framework
- Powerful tool, well-suited for phenomenological studies for particle colliders, recently extended for recasting LHC analyses (efficient treatment of different signal regions in the same analysis)

https://madanalysis.irmp.ucl.ac.be

ATLAS-SUSY-2013-11

[arXiv:1407.3278]

ATLAS search for electroweak-inos and sleptons in the 2 lepton + MET final state

SR	$m_{ m T2}^{90}$	$m_{ m T2}^{ m 120}$	$m_{ m T2}^{150}$	WWa	<i>WW</i> b	WWc	Zjets
lepton flavour	DF,SF	DF,SF	DF,SF	DF,SF	DF,SF	DF,SF	SF
central light jets	0	0	0	0	0	0	≥ 2
central b -jets	0	0	0	0	0	0	0
forward jets	0	0	0	0	0	0	0
$ m_{\ell\ell}-m_Z ~[{ m GeV}]$	> 10	> 10	> 10	> 10	> 10	> 10	< 10
$m_{\ell\ell} \; [{ m GeV}]$	_			< 120	< 170		
$E_{\mathrm{T}}^{\mathrm{miss,rel}}$ [GeV]	_			> 80			> 80
$p_{\mathrm{T},\ell\ell} \; [\mathrm{GeV}]$				> 80			> 80
$m_{ m T2}~[{ m GeV}]$	> 90	> 120	> 150		> 90	> 100	
$\Delta R_{\ell\ell}$							[0.3, 1.5]
$m_{jj}~[{ m GeV}]$							[50, 100]

- SR-m_{T2} target: $pp \rightarrow \tilde{\ell}^+ \tilde{\ell}^- \rightarrow \ell^+ \tilde{\chi}_1^0 \ell^- \tilde{\chi}_1^0$ $pp \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \ell^+ \nu \tilde{\chi}_1^0 \ell^- \nu \tilde{\chi}_1^0$

- SR-WW target: $pp \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow W^+ \tilde{\chi}_1^0 W^- \tilde{\chi}_1^0$

- SR-Zjets targets:

$$pp \to \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \to W^{\pm} \tilde{\chi}_1^0 Z \tilde{\chi}_1^0$$

		cut	ATLAS result	MA5 result		10	
		Initial number of events		152.2			
		2 OS leptons		46.9	Ъ	8	\vdash
		$m_{\ell\ell} > 20 { m ~GeV}$		46.9	ii		
		au veto		46.9	1	<u> </u>	
		$\mu\mu$ leptons	16.4	24.2	s N	6	Γ
	alidation results	≥ 2 central light jets	13.2	15.4	\mathbf{nt}		
ir		b and forward jet veto	9.5	12.4	Ve	4	\vdash
	iciude.	Z window	9.1	11.6	e,		
		$p_{T,\ell\ell} > 80 \mathrm{GeV}$	8.0	10.1		~	
		$E_T^{\rm miss,rel} > 80 { m ~GeV}$	5.1	7.0		2	-
		$0.3 < \Delta R_{\ell\ell} < 1.5$	4.2	5.9			'
		$50 < m_{ii} < 100 { m ~GeV}$	2.7	3.6		0	
		$p_T(j_1, j_2) > 45 \text{ GeV}$	1.8	1.6		()

Béranger Dumont

ATLAS-HIGG-2013-03

[arXiv:1402.3244]

- ATLAS search for invisible decays of the Higgs boson in the 2 lepton + MET final state
- only one SR, where it is required:
 - $-|m_{\ell\ell} m_{Z^0}| < 15 \text{ GeV}$ $-E_T^{\text{miss}} > 90 \text{ GeV}$ $-\Delta\phi(p_T^{\ell\ell}, E_T^{\text{miss}}) > 2.6$ $-\Delta\phi(\ell, \ell) < 1.7$ $-|E_T^{\text{miss}} - p_T^{\ell\ell}|/p_T^{\ell\ell} < 0.2$
 - no jet

- $\Delta \phi(E_T^{
m miss},p_T^{
m miss}) < 0.2$ (avoid fake MET from misreconstructed energy in the calorimeter)

	cut	ATLAS result	MA5 result	10 ²]
	Initial number of events		838.9	[$\boxed{ZH \rightarrow \ell\ell + inv.}$
	2 OS leptons		256.2	_	
	$ m_{\ell\ell} - m_{Z^0} < 15 \text{ GeV}$	243	244.1		
validation results	$E_T^{\rm miss} > 90 { m ~GeV}$	103	105.1	- 01 /	
include:	$\Delta \phi(p_T^{\ell\ell}, E_T^{\rm miss}) > 2.6$		91.7	ven	
	$\Delta \phi(\ell,\ell) < 1.7$		82.9	Ne Ne	
	$\Delta \phi(E_T^{\rm miss}, p_T^{\rm miss}) < 0.2$		76.5	10 ⁰ F	ь
	$ E_T^{\text{miss}} - p_T^{\ell\ell} / p_T^{\ell\ell} < 0.2$		63.2	ļ	
	jet veto	$44 \pm 1 \pm 3$	54.8	0	0.5 1 1.5 2
					$ E_T^{ m mass}-p_T^{ m ee} /p_T^{ m ee}$

Exploring the dark sector

Béranger Dumont