

G. Eigen, University of Bergen representing the ATLAS collaboration

SUSY 2015, Lake Tahoe August 25 2015

- The ATLAS experiment has been designed to discover new particles
 first success: the Higgs discovery in July 2012
- However, the excellent vertex finding, tracking and muon identification capabilities of the ATLAS detector provide good conditions for studies of B mesons and B baryons
- ATLAS has performed several measurements, e.g. B⁺ and b hadron production cross sections, B⁰_d, B⁰_s and Λ_b lifetimes, *CP* violation in the B⁰_s system, studies of the B⁺_c decay, search for $B^0_s \rightarrow \mu^+ \mu^-$,
- Present here:
 - Flavor-tagged time-dependent angular analysis in $B_s^0 \rightarrow J/\psi\phi$ and prospects for run II and the high luminosity upgrades
 - Status of $B_s^0 \rightarrow \mu^+ \mu^-$ and the measurement of f_s/f_d
 - Expectations for run II

The ATLAS Detector and Run I Data

 ATLAS is a multi-purpose detector providing excellent tracking, calorimetry and μ identification

- μ identification from combined μ spectrometer (MS) & inner detector (ID) tracking
- ID tracks provide precision momentum and lifetime measurements for momentum range being of interest for B physics
 G. Eigen, SUSY 15

25m

44m

Tile calorimeters

LAr hadronic end-cap and forward calorimeters

LAr electromagnetic calorimeters

Pixel detector

Transition radiation tracker

Semiconductor tracker

Solenoid maanet

Toroid magnets

Muon chambers

Flavor-tagged

time-dependent

angular analysis in

 $B_s^0 \rightarrow J/\psi\phi$

- B_{s}^{o} mesons form a light CP-even (B_{L}) and a heavy CP-odd (B_{H}) eigenstate
- Mass difference of the 2 CPES is $\Delta M=m(B_H)-m(B_L)=17.757\pm0.021 \text{ ps}^{-1}$ (data)
- Lifetime difference of the 2 CPES is $\Delta \Gamma = \Gamma(B_{H}) \Gamma(B_{L}) = 0.087 + 0.021 \text{ ps}^{-1}$ (SM)

 K^+

 ψ_{T}

B⁰

 ϕ rest frame

Х

- B⁰_s→J/ψφ is a vector vector decay → not a pure CPES, since S, P, & D waves contribute (CP=+1 for S & D wave; CP=-1 for P wave)
 → in addition, B⁰_s→J/ψK⁺K⁻ in S wave (CP=-1) contributes under φ peak
- Need to perform angular analysis to separate CP-even from CP-odd ES
- Use transversity frame: $\Omega_T = (\psi_T, \theta_T, \phi_T) \rightarrow$ amplitudes $A_0, A_T, A_{||}$ project S, P & D wave contributions and A_s for S-wave background

G. Eigen, SUSY 15

 J/ψ rest fram

 θ_{T}

K-

CP Violation in $B_s^0 \rightarrow J/\psi\phi$

In $B_{s}^{0} \rightarrow J/\psi\phi$, CP violation is caused by interference between mixing and decay

Candidate Selection

• 2 oppositely charged muons from di-muon trigger ($p_T^{\mu 1}$ =4 GeV & $p_T^{\mu 2}$ =6 GeV) from a common vertex (χ^2 /dof <10) having m_{µµ} consistent with J/ ψ mass BB: (both muons in barrel) 2989 <m(J/ ψ) < 3199 MeV EB: (1 µ in endcap, 1 µ in barrel) 2944 <m(J/ ψ) < 3242 MeV EE: (both muons in endcap) 2827 <m(J/ ψ) < 3357 MeV

• 2 oppositely charged hadrons from common $h^+h^-\mu^+\mu^-$ vertex (χ^2 /dof <3) having m_{KK} consistent with ϕ mass with $p_T(K^{\pm}) > 1$ GeV

Determine proper decay time $t = \frac{L_{xy}m_{B}}{P_{T_{B}}}(L_{xy}: \text{ transverse decay length})$

The average pile up is 20.7 pp interaction per bunch crossing determine 3-d impact parameter d₀ and select smallest

d₀: distance between the line extrapolated from the reconstructed B⁰_s vertex in the direction of the B⁰_s momentum for each primary vertex

• Select mass range 5.15 < $m_{J/\psi\phi}$ < 5.65 GeV

B^o_s Flavor Tagging

- Identify B⁰_s flavor at production point by tagging the flavor of the other b quark in the event (in semileptonic decays, Q_e/Q_µ tags b flavor)
- Define cone charge for tagging categories μ , e, jet: ($\kappa_{\mu,jet} = 1.1$; $\kappa_e = 1.0$) q_i : charge, p_T^i : transverse momentum

 $\boldsymbol{Q}_{i} = \frac{\sum_{i}^{N_{tracks}} \boldsymbol{q}_{i} \boldsymbol{\cdot} \left(\boldsymbol{p}_{T}^{i}\right)^{\kappa}}{\sum_{i}^{N_{tracks}} \left(\boldsymbol{p}_{T}^{i}\right)^{\kappa}}$

- Tagging power: ϵ : efficiency ω : probability to tag b flavor correctly (ω =0.5 for untagged)
- Use $B^{\pm} \rightarrow J/\psi K^{\pm}$ to determine B charge

Tagger	Tagging Power [%]
Combined μ	0.92 ± 0.02
Electrons	0.29 ± 0.01
Segment Tagged μ	0.10 ± 0.01
Jet charge	0.19 ± 0.01
Total	1.49 ± 0.02

Maximum-Likelihood Fit

• Perform unbinned maximum-likelihood fit to reconstructed mass m_i , measured proper decay time t_i plus its uncertainty σ_{ti} , tagging probability ω_i and the transversity angles Ω_{Ti} for tagging category i to extract Γ_s , $\Delta\Gamma_s$, ϕ_s

 $In \mathcal{L} = \sum_{i=1}^{N} \left\{ w_{i} \cdot In\left(f_{s} \cdot \mathcal{F}_{s}\left(\underline{m}_{i}, \underline{t}_{i}, \sigma_{t_{i}}, \Omega_{i}, \omega_{i}\right) + f_{s} \cdot f_{\mathcal{B}_{d}^{0}} \cdot \mathcal{F}_{\mathcal{B}_{d}^{0}}\left(\underline{m}_{i}, \underline{t}_{i}, \sigma_{t_{i}}, \Omega_{i}, \omega_{i}\right) + \left(1 - f_{s} \cdot \left(1 + f_{\mathcal{B}_{d}^{0}}\right)\right) \cdot \mathcal{F}_{bkg}\left(\underline{m}_{i}, \underline{t}_{i}, \sigma_{t_{i}}, \Omega_{i}, \omega_{i}\right)\right) \right\}$ Signal PDF

f_s: signal fraction N: number of selected candidates w: weighting factor for trigger efficiencies $f_B^0_d$: fraction of B^0_d events misidentified as B^0_s events

PDF for combinatorial Background

• Use only 2012 data for the fit (\mathcal{L}_{tot} =14.3 fb⁻¹); add 2011 data (4.9 fb⁻¹) later

$B_{s}^{O} \rightarrow J/\psi\phi$ Systematic Uncertainty

- Background angular model → vary sideband mass regions
 - → account for mis-reconstructed $B_d^0 \rightarrow J/\psi K^{*0}$ correct angular shapes
 - → include $B_d^0 \rightarrow J/\psi K\pi$ contamination and interference with $B_d^0 \rightarrow J/\psi K^{*0}$
- Tagging \rightarrow uncertainty due to finite size of $B^0_d \rightarrow J/\psi K^{*0}$ calibration sample \rightarrow Precision of the tagging calibration (use alternate parameterizations)

Angular acceptance method and trigger efficiency

	ϕ_s	$\Delta\Gamma_s$	Γ_s	$ A_{ }(0) ^2$	$ A_0(0) ^2$	$ A_S(0) ^2$	δ_{\perp}	δ_{\parallel}	$\delta_{\perp} - \delta_S$
	[rad]	$[ps^{-1}]$	$[ps^{-1}]$				[rad]	[rad]	[rad]
Tagging	0.026	0.003	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	0.001	0.238	0.014	0.004
Acceptance	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	0.003	$< 10^{-3}$	0.001	0.004	0.008	$< 10^{-3}$
Background angles model:									
Choice of $p_{\rm T}$ bins	0.02	0.006	0.003	0.003	$< 10^{-3}$	0.008	0.004	0.006	0.008
Choice of mass interval	0.008	0.001	0.001	$< 10^{-3}$	$< 10^{-3}$	0.002	0.021	0.005	0.003
B_d^0 background model	0.008	$< 10^{-3}$	$< 10^{-3}$	0.001	$< 10^{-3}$	0.008	0.007	$< 10^{-3}$	0.005
Fit model:									
Default fit	0.001	0.002	$< 10^{-3}$	0.002	$< 10^{-3}$	0.002	0.025	0.015	0.002
Mass Signal model	0.004	$< 10^{-3}$	$< 10^{-3}$	0.002	$< 10^{-3}$	0.001	0.015	0.017	$< 10^{-3}$
Mass Background model	$< 10^{-3}$	0.002	$< 10^{-3}$	0.002	$< 10^{-3}$	0.002	0.027	0.038	$< 10^{-3}$
Time Resolution model	0.003	$< 10^{-3}$	0.001	0.002	$< 10^{-3}$	0.002	0.057	0.011	0.001
Total	0.036	0.007	0.003	0.006	0.001	0.013	0.25	0.05	0.01

$B_{s}^{0} \rightarrow J/\psi\phi$ Fit Results for 8 TeV Data

Projections of the maximum-likelihood fit on the B⁰_s mass and the proper decay time

No requirements on the B_s^0 lifetime

<u>×1</u>0³ Entries / 0.5 MeV Data **ATLAS** Preliminary $\sqrt{s} = 8$ TeV, 14.3 fb⁻¹ 10 — Total Fit - - Signal $- B_d^0 \rightarrow J/\psi K^{*0}$ data-fit)/σ 5.15 5.2 5.25 5.3 5.35 5.4 5.45 5.5 5.55 5.6 5.65 B_s Mass [GeV]

B⁰_s proper decay time

$B_s^0 \rightarrow J/\psi\phi$ Fit Results for 8 TeV Data

Fit Results for $B_{s}^{O} \rightarrow J/\psi\phi$

1 5

φ [rad]

---- 68% C.L. (√s = 7 TeV)

----- 95% C.L. ($\sqrt{s} = 7$ TeV)

----- 68% C.L. ($\sqrt{s} = 8 \text{ TeV}$)

Standard Model

0

0.5

Future Expectations for ϕ_s Measurements

0.06

0.04

0.02

0

20

30

50

- Resolution improves by ~30%
- G. Eigen, SUSY 15

B⁰_s Tag Probability Distributions

- Assume di-muon thresholds of $p_T^{\mu 1} = 6$, $p_T^{\mu 2} = 6$ GeV for run II and $p_T^{\mu 1} = 11$, $p_T^{\mu 2} = 11$ GeV for HL run
- Validate model with 2011 data and check 2012 data

	2011	2012	2015-17		2019-21	2023-30+
Detector	current	current	IBL		IBL	ITK
Average interactions per BX $< \mu >$	6-12	21	60		60	200
Luminosity, fb^{-1}	4.9	20	100		250	3 000
Di- μ trigger $p_{\rm T}$ thresholds, GeV	4 - 4(6)	4 - 6	6 - 6	11 - 11	11 - 11	11 - 11
Signal events per fb^{-1}	4 400	4 320	3 280	460	460	330
Signal events	22 000	86 400	327 900	45 500	114 000	810 000
Total events in analysis	130 000	550 000	1 874 000	284 000	758 000	6 461 000
MC $\sigma(\phi_s)$ (stat.), rad	0.25	0.12	0.054	0.10	0.064	0.022

• Despite higher pile-up and higher muon p_T thresholds, the statistical uncertainty on ϕ_s will improve to 0.054 rad in run II and 0.022 rad for HL running in 2030s

Status of $B_s^0 \rightarrow \mu^+\mu^-$

and

measurement of f_s/f_d

ATLAS: ArXiv:hep-ex/1507.08925

G. Eigen, SUSY 15

17

 $B^{0}_{s,d} \rightarrow \mu^{+}\mu^{-}$

- Flavor-changing neutral currents (FCNC) are forbidden in the SM at tree level but are allowed at higher orders
- The decays $B_{s,d}^{\circ} \rightarrow \mu^{+}\mu^{-}$ are highly suppressed:
 - $\mathcal{B}_{SM}(B_{S}^{0} \rightarrow \mu^{+}\mu^{-}) = (3.65 \pm 0.23) \times 10^{-9} \text{ C. Bobeth et al., Phys. Rev. Lett.}$ 112, 101801 (2014)
 - $\mathcal{B}_{SM}(B^{0}_{d} \rightarrow \mu^{+}\mu^{-}) = (1.06 \pm 0.09) \times 10^{-10}$
- New physics contributions may modify branching fraction
- Evidence from LHCb and CMS (combined result)
 - $\mathcal{B}(B_{s}^{0} \rightarrow \mu^{+}\mu^{-}) = (2.8 \pm 0.7) \times 10^{-9}$
- Nature, 522, 7554, 68 (2015) [arXiv:1411.4413]
- $\mathcal{B}(B_d^0 \rightarrow \mu^+ \mu^-) = (3.9 \pm 1.6) \times 10^{-9}$ → consistent with SM prediction (some room for NP)
- ATLAS analysis with full data set is ongoing results for 2011 presented ATLAS-CONF-2013-076
- New result on ratio of fragmentation fraction f_s/f_d G. Eigen, SUSY 15

- The ratio f_s/f_d needs to be known to calculate the number of B^0_s mesons produced in ATLAS: $N_{Bs} = \mathcal{L} \cdot \sigma_b \cdot f_s$
- Extract f_s/f_d from ratio of yields in $B_s^0 \rightarrow J/\psi\phi$ and $B_d^0 \rightarrow J/\psi K^{*0}$

- Use 2.47 fb⁻¹ of 2011 data that is sufficient as measurement is systematics dominated

Analysis Strategy

- Select 2 oppositely-charged muons with p_T > 4 GeV from a common vertex with $\chi^2/dof < 10$
- Select J/ψ events in similar 3 detector regions (BB, EB EE) as in the time-dependent $B_s^0 \rightarrow J/\psi\phi$ analysis
- Select ϕ candidates within ± 2 widths and K^{*0} candidates within ± 1 width $p_T(K, \pi) > 0.8$ GeV
- Final selection for $B_s^0(B_d^0)$ signal candidates
 - $p_T(B_s^0, B_d^0) > 8 \text{ GeV}$
 - $\chi^2/dof < 2.4$ (2.6) for 4 track vertex
 - Transverse decay length L_{xy} > 0.26 (0.30) mm
 - Pointing angle a < 0.14 (0.12) rad</p>
- Backgrounds: direct J/ψ decays inclusive bb→J/ψX combinatorial bb→J/ψX peaking (J/ψhh') (h,h': charged hadrons)

Signal f_s/f_d Measurement

- Perform extended unbinned maximum likelihood fit to $m_{J/\psi\phi}$ & $m_{J/\psi K^*}$ spectra to extract $B^o_s \rightarrow J/\psi\phi$ & $B^o_d \rightarrow J/\psi K^{*o}$ signal yields
 - Model:
 - $B_s^0 \rightarrow J/\psi \phi \& B_d^0 \rightarrow J/\psi K^{*0}$ signal with 3 Gaussians
 - $B_s^0 \rightarrow J/\psi\phi$ background with exponential & Crystal Ball function
 - $B^{0}_{d} \rightarrow J/\psi K^{*0}$ background with exponential & complementary error function & CB function & Gaussian
- Observe $6644\pm102_{stat}\pm219_{sys}$ $J/\psi\phi$ signal candidates
- Observe 36287±324_{stat}±653_{sys} J/ψK^{*0} signal candidates
 G. Eigen, SUSY 15

Results for f_s/f_d

- ATLAS measurement is in good agreement with the LHCb results
- Above 8 GeV, p_T distribution is consistent with being uniform

Performance

in run II

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/Summer2015-13TeV

Tracking Performance

Hit distributions in IBL, pixel, SCT and TRT

Tracking Performance

Observed difference in impact parameter resolution is due material in the IBL not-accounted for in the simulation (mainly at low p_T)

Additional misalignment effects

Vertexing Performance

Vertex reconstruction requires ≥2 tracks

- Apply scale factors to fitted vertex resolution in data that are derived using the split vertex method
- Assume that tracks originate from single interaction (no beam spot constraint)
- Determine scale factor from

Scaled resolutions are close to values in simulation

Impact Parameter Resolution

J/ψ Performance at 13 TeV

Invariant-Mass Distributions

Conclusions

- New ATLAS measurement of ϕ_s =-0.094±0.082_{stat}±0.033_{sys} rad agrees with the SM prediction and with the results of CMS, LHCb, CDF and D0
- In run II, the uncertainty on ϕ_s will be reduced to ~0.054 rad and in the HL run it will improve to ~0.022 rad
- The ATLAS $B^{0}_{s,d} \rightarrow \mu^{+}\mu^{-}$ analysis is almost finalized
- ATLAS has measured $f_s/f_d = 0.240 \pm 0.004_{stat} \pm 0.013_{sys} \pm 0.017_{th}$
- The ATLAS detector is performing well in run II and is ready for new CP violation (ϕ_s , ...) and rare B decay measurements

Backup Slides

Factorize the signal and background PDFs

 $\mathcal{F}_{s}\left(\boldsymbol{m}_{i},\boldsymbol{t}_{i},\boldsymbol{\sigma}_{t_{i}},\boldsymbol{\Omega}_{i},\boldsymbol{\omega}_{i}\right) = P_{s}\left(\boldsymbol{m}_{i}\right) \cdot P_{s}\left(\boldsymbol{\Omega}_{i},\boldsymbol{t}_{i},\boldsymbol{\omega}_{i},\boldsymbol{\sigma}_{t_{i}}\right) \cdot P_{s}\left(\boldsymbol{\sigma}_{t_{i}}\right) \cdot P_{s}\left(\boldsymbol{\omega}_{i}\right) \cdot A\left(\boldsymbol{\Omega}_{i},\boldsymbol{p}_{T_{i}}\right) \cdot P_{s}\left(\boldsymbol{p}_{T_{i}}\right) \\ \mathcal{F}_{bkg}\left(\boldsymbol{m}_{i},\boldsymbol{t}_{i},\boldsymbol{\sigma}_{t_{i}},\boldsymbol{\Omega}_{i},\boldsymbol{\omega}_{i}\right) = P_{b}\left(\boldsymbol{m}_{i}\right) \cdot P_{b}\left(\boldsymbol{t}_{i}\left|\boldsymbol{\sigma}_{t_{i}}\right|\right) \cdot P_{b}\left(\boldsymbol{\omega}_{i}\right) \cdot P_{b}\left(\boldsymbol{\Omega}_{i}\right) \cdot P_{b}\left(\boldsymbol{\sigma}_{t_{i}}\right) \cdot P_{b}\left(\boldsymbol{p}_{T_{i}}\right) \\ \end{array}$

• $P_s(m_i)$: 3 Gaussians $P_{s,b}(\sigma_{ti})$: Gamma function $P_{s,b}(p_{Ti})$: Gamma function $P_s(\omega_i)$: measured distributions for each of the 4 tagging categories $A(\Omega_i, p_{Ti})$: 4-d binned acceptance model $P_s(\Omega_i, t_i, \omega_i, \sigma_{ti})$: combined decay time and full angular distribution $P_b(t_i|s_{ti})$: Gaussian for prompt peak +2 positive & 1 negative exponentials $P_b(\Omega_i)$: parameterize by Legendre polynomials $P_b(m_i)$: exponential plus constant

• $\mathcal{F}_B{}^0{}_d$ accounts for (2.4±0.2)% misidentified $B{}^0{}_d$; PDF shapes from MC G. Eigen, SUSY 15

PDF for Decay Distribution of $B_s^0 \rightarrow J/\psi\phi$

• $P_s(\Omega_i, t, \sigma_{ti}, \omega)$ is a joint PDF of decay time and transversity angles

 $\frac{d^{4}\Gamma}{dtd\Omega} = \sum_{k=1}^{10} \mathcal{O}^{(k)}(t) g^{(k)}(\theta_{\tau}, \psi_{\tau}, \phi_{\tau})$

k	$\mathcal{O}^{(k)}(t)$	$g^{(k)}(heta_T,\psi_T,\phi_T)$
1	$\frac{1}{2} A_0(0) ^2 \left[(1+\cos\phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1-\cos\phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$2\cos^2\psi_T(1-\sin^2\theta_T\cos^2\phi_T)$
2	$\frac{1}{2} A_{\parallel}(0) ^{2}\left[\left(1+\cos\phi_{s}\right)e^{-\Gamma_{\rm L}^{(s)}t}+\left(1-\cos\phi_{s}\right)e^{-\Gamma_{\rm H}^{(s)}t}\pm2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_T(1-\sin^2\theta_T\sin^2\phi_T)$
3	$\frac{1}{2} A_{\perp}(0) ^{2}\left[(1-\cos\phi_{s})e^{-\Gamma_{\rm L}^{(s)}t} + (1+\cos\phi_{s})e^{-\Gamma_{\rm H}^{(s)}t} \mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_T\sin^2\theta_T$
4	$\frac{1}{2} A_0(0) A_{\parallel}(0) \cos\delta_{\parallel} $	$\frac{1}{\sqrt{2}}\sin 2\psi_T \sin^2\theta_T \sin 2\phi_T$
	$\left[\left(1 + \cos\phi_s\right) e^{-\Gamma_{\rm L}^{(s)}t} + \left(1 - \cos\phi_s\right) e^{-\Gamma_{\rm H}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	
5	$ A_{\parallel}(0) A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t} - e^{-\Gamma_{\rm H}^{(s)}t})\cos(\delta_{\perp} - \delta_{\parallel})\sin\phi_{s}$	$-\sin^2\psi_T\sin 2\theta_T\sin\phi_T$
	$\pm e^{-\Gamma_s t} (\sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta m_s t) - \cos(\delta_{\perp} - \delta_{\parallel}) \cos\phi_s \sin(\Delta m_s t))]$	1
6	$ A_0(0) A_{\perp}(0) [\frac{1}{2}(e^{-1\sum_{l=1}^{t}t} - e^{-1H^{t}})\cos\delta_{\perp}\sin\phi_s$	$\frac{1}{\sqrt{2}}\sin 2\psi_T \sin 2\theta_T \cos \phi_T$
	$\pm e^{-\Gamma_s t} (\sin \delta_{\perp} \cos(\Delta m_s t) - \cos \delta_{\perp} \cos \phi_s \sin(\Delta m_s t))]$	
7	$\frac{1}{2} A_S(0) ^2 \left (1 - \cos\phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1 + \cos\phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \mp 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right $	$\frac{2}{3}\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
8	$ A_{S}(0) A_{\parallel}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t} - e^{-\Gamma_{\rm H}^{(s)}t})\sin(\delta_{\parallel} - \delta_{S})\sin\phi_{s}$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin^2\theta_T\sin 2\phi_T$
	$\pm e^{-\Gamma_s t} (\cos(\delta_{\parallel} - \delta_S) \cos(\Delta m_s t) - \sin(\delta_{\parallel} - \delta_S) \cos\phi_s \sin(\Delta m_s t))]$	
9	$\frac{1}{2} A_S(0) A_{\perp}(0) \sin(\delta_{\perp}-\delta_S)$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin2\theta_T\cos\phi_T$
	$\left[\left(1 - \cos\phi_s\right) e^{-\Gamma_{\rm L}^{(s)}t} + \left(1 + \cos\phi_s\right) e^{-\Gamma_{\rm H}^{(s)}t} \mp 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	
10	$ A_0(0) A_S(0) [\frac{1}{2}(e^{-\Gamma_{\rm H}^{(s)}t} - e^{-\Gamma_{\rm L}^{(s)}t})\sin\delta_S\sin\phi_s$	$\left \frac{4}{3}\sqrt{3}\cos\psi_T \left(1-\sin^2\theta_T\cos^2\phi_T\right) \right $
	$\pm e^{-\Gamma_s t} (\cos \delta_S \cos(\Delta m_s t) + \sin \delta_S \cos \phi_s \sin(\Delta m_s t))]$	5 / - (- / - / - /

$B_{s}^{0} \rightarrow J/\psi\phi$ Fit Results for Run I

							-						ł
Combine 2011 and 2012 results				Value	Stat.	Syst.	Unit						
			HEAL O	242.0			$\phi_{ m s}$		-0.094	0.083	0.033	rad	hit .d ;-1 ;-1 .d .d .d
Corre	lation	of Fit	Parame	eters			$\Delta\Gamma_{t}$	s	0.082	0.011	0.007	Unit rad ps ⁻¹ ps ⁻¹	
							Γ_s		0.677	0.003	0.003	ps-1	
							A (0)) ²	0.227	0.004	0.006		
							A ₀ (0)) 2	0.515	0.004	0.002		
							A _s (0)) 2	0.086	0.007	0.012		
							δ_{11}		4.13	0.34	0.15	rad	
							δ_{\perp}		3.16	0.13	0.05	rad	
							δ_\perp - δ	$\delta_{ m S}$	-0.08	0.03	0.01	rad	
	ϕ_s	Γ	Γ_s	$ (0) ^2$	$ _{0}(0) ^{2}$	$ _{S}(0) ^{2}$	δ_{\parallel}	$\delta_{\!\perp}$	δ_{\perp} –	δ_S			
4	1 000	0 1 1 0	0.007	0.042	0.020	0.046	0.002	0.02	1 0.0	01			

	ϕ_s	Γ	Γ_s	$ _{ }(0) ^2$	$ _{0}(0) ^{2}$	$ S(0) ^2$	δ_{\parallel}	δ_{\perp}	$\delta_{\perp} - \delta_{S}$
ϕ_s	1.000	0.110	-0.097	0.043	0.030	0.046	0.093	0.034	-0.001
Γ		1.000	-0.421	0.104	0.139	0.051	0.021	0.012	-0.011
Γ_s			1.000	-0.124	-0.047	0.156	-0.051	-0.017	0.019
$ _{ }(0) ^2$				1.000	-0.33	0.056	0.201	0.058	-0.019
$ _{0}(0) ^{2}$					1.000	0.216	-0.019	0.004	0.014
$ _{S}(0) ^{2}$						1.000	-0.094	-0.012	0.055
δ_{\parallel}							1.000	0.235	-0.014
δ_{\perp}								1.000	0.010
$\delta_{\perp} - \delta_{S}$									1.000