

Prospects for $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ observation at CERN-NA62

Cristina Biino * - INFN Torino SUSY 2015 – Lake Tahoe, 23-29 August 2015

*On behalf of the NA62 Collaboration: CERN, Ferrara, Firenze, LNF, Napoli, Perugia, Pisa, Roma1, Roma2, Torino, UC Louvain, Sofia, Bucharest, Prague, Mainz, Birmingham, Bristol, Glasgow, Liverpool, TRIUMF, UBC, IHEP, INR, JINR, George Mason, SLAC, UC Merced, BU, BNL, San Luis Potosi

SM theoretical framework

- The $K^+ \rightarrow \pi^+ \sqrt{\nu} v$ decay is a FCNC process, in the SM is forbidden at tree level and dominated by short distance dynamics.
- Very clean theoretical scenario
 - No hadronic uncertanties
 - Electroweak amplitude is largerly dominated by top quark loops
 - Dependence on the product of CKM matrix elements V_{ts}*V_{td}
- SM prediction takes into account:
 - 1 loop contributions at the leading order
 - NLO QCD correction to top quark contributions
 - NLO electroweak corrections to both top and charm contributions
 - NNLO QCD corrections to charm contributions
 - Isospin breaking and non-perturbative effects

2

C. Biino – SUSY 2015

SM theoretical framework

Short-distance contribution (top quark) dominance \rightarrow theoretically clean dependence on the product of CKM matrix elements $V_{ts}^*V_{td}$

 $K \rightarrow \pi \sqrt{v}$ is one of the few processes that can be used to verify accurately the SM Unitary.

SM suppression and proportionality to powers of $V_{ts}^*V_{td}$ allows:

- stringent test of the SM
- high sensitivity to New Physics (NP)

Complementary to LHC

3

Theoretical prediction

[A.J. Buras, D. Buttazzo, J. Girrbach-Noe and R.Knegjens, arXiv:1503.02693]

4

New Physics Sensitivity

Measurement of charged $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay and neutral $K_{L} \rightarrow \pi^0 \nu \bar{\nu}$ modes can discriminate different NP scenarios.

Probe of MSSM non-MFV, not yet excluded by LHC [G. Isidori et al., JHEP 0608 (2006) 088]

AJ.Buras et al., arXiv:1507.08672

Measurement of $|V_{td}|$ complementary to measurements from B-B mixing $\delta(BR)/BR = 10\%$ implies $\delta(|V_{ts}|)/|V_{td}|=7\%$

5

Theoretical and experimental status

C. Biino – SUSY 2015

Experimental Status

• BR(K⁺ $\rightarrow \pi^{+}\nu\bar{\nu}) = (17.3^{+11.5}_{-10.5}) \times 10^{-11}$ (from 7 events) E787/E949 collaborations: Phys.Rev.D77.052003(2008), Phys.Rev.D79.092004 (2009) • BR(K₁ $\rightarrow \pi^{0}\nu\bar{\nu}) < 2600 \times 10^{-11}$

E391a Collaboration: Phys. Rev. 100, 201802 (2008); PhysRevD.81.072004 (2010)

Experimental vs. Theoretical Status

SM		SM prediction	Experiment
	→B(K ⁺ → π^+ ν $\overline{\nu}$)	(9.11 ± 0.72)×10 ⁻¹¹	(17.3 ^{+11.5} _{-10.5}) × 10 ⁻¹¹
	$B(K^{0}_{L} \rightarrow \pi^{0} \vee \overline{\nu})$	(3.00 ± 0.30)×10 ⁻¹¹	< 2600 × 10 ⁻¹¹

Gap between theoretical precision and large experimental errors!

Experimental requirements

NA62 goal: measure BR(K⁺ $\rightarrow \pi^+ \nu \overline{\nu}$) with 10% accuracy \rightarrow O(100) SM events + systematics control at % level

- Assuming a 10% signal acceptance and a BR($K^+ \rightarrow \pi^+ v \bar{v}$) ~10¹⁰ at least 10¹³ Kaon decays are required
- Rejection factor for dominant kaon decays of the order of 10¹² (for background <20%)
- Systematics: <10% precision background measurement

NA62 design criteria: Kaon beam intensity, signal acceptance, background suppression

• Technique: high momentum Kaons and in flight decay

- Signal signature: one beam
 K⁺ track fully matched with
 one final state π⁺ track
- Basic ingredients: precise timing & kinematic cuts

8

NA62 analysis strategy

Kinematically discriminating variable: $m_{miss}^2 = (P_K - P_{\pi})^2$ where the particle from the decay is assumed to be a pion.

2 signal regions, on each side of the $K^+ \rightarrow \pi^+ \pi^0$ peak, are used to remove contributions from more than 2 kinematical regions 90% of main K⁺ background decays. $\frac{\Gamma_{tot}}{100} \frac{d\Gamma_{tot}}{dm^2}$ لي حالي مناقع 1.2 $\mathbf{K}^+ \rightarrow \pi^+ \pi^0(\gamma)$ $\mathbf{K}^{+} \rightarrow \pi^{+} \pi^{0} (\gamma)$ √, ³0.18 K⁺→π⁺ν∇ (×10¹⁰) 0.16 10 $\mathbf{K}^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$ 0.14 $\mathbf{K}^{+} \rightarrow \mu^{+} \nu_{\mu} (\gamma)$ 0.12 10 $\rightarrow e^{\dagger}\pi^{0}v$ 0.1 10-Region I 0.08 10^{-t} 0.06 **Region II** 0.04 TTEVe 10-6 $K^* \rightarrow \pi^* V \overline{V} (\times 10^1)$ 0.02 K⁺→π⁺π⁺π 0 $\begin{array}{ccc} 0.1 & 0.12 \\ m_{miss}^2 \ [GeV^2/c^4] \end{array}$ -0.04 -0.02 0 0.02 0.04 0.06 0.08 -0.04 -0.02 0.02 0.06 0.08 0.12 0 0.04 m_{miss}^{2} [GeV²/c⁴]

NA62 experimental strategy

Kaon Physics

Background suppression:

K decay background	BR	Rejection tools
$K^+\!\!\rightarrow\mu^+\nu$	0.6355	μ-ID + kinematics
$K^+\!\!\rightarrow\!\pi^+\;\pi^0$	0.2066	γ-veto + kinematics
$K^+ \rightarrow \pi^+ \pi^+ \pi^-$	0.0559	π [−] -ID +multi-track + kinematics
$K^+ \rightarrow \pi^+ \pi^0 \pi^0$	0.0176	γ-veto + kinematics
$K^+ \rightarrow \pi^0 e^+ \nu$	0.0507	e-ID + kinematics + γ-veto
$K^+\!\!\rightarrow\!\pi^0\mu^+\nu$	0.0335	μ-ID + kinematics + γ-veto
$K^+ \rightarrow \pi^+ \pi^- e^+ \nu$	4.257 x 10 ⁻⁵	

• Beam tracking

- Photon veto
- Muon veto
- $\pi/\mu/e$ identification

Background suppression factors required O(10¹²):

Kinematics	O(10 ⁴ -10 ⁵)
Charged Particle ID	O(10 ⁷)
γ detection	O(10 ⁸)
Timing	O(10 ²)

 $P_{\pi+}$ < 35 GeV/c to ensure $P_{\pi0}$ > 40 GeV/c

The Analysis Sensitivity

Decay	event/year
$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ (*)	45
$K^+ \rightarrow \pi^+ \pi^0$	5
$K^+ \rightarrow \mu^+ \nu$	1
$K^+ \rightarrow \pi^+ \pi^+ \pi^-$	< 1
$K^{\scriptscriptstyle +} \rightarrow \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -} e^{\scriptscriptstyle +} \nu$ + other 3 track decays	< 1
K^+ → $π^+ π^0 γ$ (IB)	1.5
$K^+ → μ^+ ν γ$ (IB)	0.5
$K^{+} \rightarrow \pi^{0} e^{+} (\mu^{+}) \nu$ + others	negligible
Total background	< 10

(*) [SM] (flux 4.5×10¹² K⁺ decay/year)

The NA62 experiment at CERN

2005	Proposal
2009	Approved
2010	Technical design
2012	Technical run
	(partial layout)
2014	Pilot Run
2015-18	Physics Runs

~200 participants from 30 institutions

12 Kaon Physics

NA62 beam and detector

C. Biino – SUSY 2015

The NA62 beam and detector

- CERN SPS 400 GeV/c primary proton beam on a Be target
- Secondary un-separated positive hadron beam (6% K⁺); momentum 75 (±1%) GeV/c
- Nominal beam intensity: 750 MHz (~45 MHz K⁺ decays in the fiducial volume)

The NA62 detector

LKR

CHOD

STRAW

14

MUV

NA62 beam and detector

RICH

C. Biino – SUSY 2015

First Look at 2014 Data Quality

(no GTK, 3 out of 4 Straw ch., no RICH mirror alignment, no photon rejection)

- Events with only 1 track in the straw detector (40ns time window)
- 10² muon rejection at trigger level

Requiring K-ID from KTAG in time with the spectrometer track Requiring decay vertex in fiducial region

First Look @2014 Data: Missing Mass NA62

Summary & prospects at NA62 The rare $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay

 $BR_{theor} = (9.11 \pm 0.72) \times 10^{-11} \qquad BR_{exp} = (17.3^{+11.5}) \times 10^{-11}$

- ☆ Gap between theoretical precision and large experimental error☆ Sensitive probe to New Physics
- ***** Motivations for a strong experimental effort
- * NA62: a substantial upgrade of the previous CERN experiments, designed to measure the BR with 10% precision
- **NA62** successful pilot run in 2014
- ★ Data taking starting: NA62 ready for physics and planning to collect the world largest sample of K⁺

NA62 marks CERN's return to the exploration of the Standard Model using high-intensity Kaon beams.

Kaons are partner of LHC in the quest for physics beyond the SM.

Kaon Physics

Summary

- vtra matoria

Kaon physics facilities

Charged Kaon Beams: different exp. techniques.

"Stopped" → work in Kaon frame, high Kaon purity (electromagneto-static-separators); compact detectors

"In-Flight" → decays in vacuum (no scattering, no interactions) ; RF separated or unseparated beams; extended decay regions

NA62 \Lambda

	Ехр	Machine	Meas. or UL 90% CL	Notes
		Argonne	< 5.7 x 10 ⁻⁵	Stopped, HL Bubble chamber
		Bevatron	< 5.6 x 10 ⁻⁷	Stopped, Spark chamber
		КЕК	< 1.4 x 10 ⁻⁷	Stopped, $\pi^+ \mu^+ e^+$
	E787	AGS	(1.57 ^{+1.75} _{-0.82}) x 10 ⁻¹⁰	Stopped
	E949	AGS	(1.73 ^{+1.15} _{-1.05}) x 10 ⁻¹⁰	Stopped
	NA62	SPS		In-Flight, unseparat.
Kaor	Physics	C. Biino – SUSY 2015		

Beyond the baseline

Decay Decay	Physics	Present limit (90% C.L.) / Result	NA62
$\pi^+\mu^+e^-$	LFV	1.3×10^{-11}	0.7×10^{-12}
$\pi^+\mu^-e^+$	LFV	5.2×10^{-10}	0.7×10^{-12}
$\pi^-\mu^+e^+$	LNV	5.0×10^{-10}	0.7×10^{-12}
$\pi^-e^+e^+$	LNV	6.4×10^{-10}	2×10^{-12}
$\pi^-\mu^+\mu^+$	LNV	1.1×10^{-9}	0.4×10^{-12}
$\mu^- \nu e^+ e^+$	LNV/LFV	2.0×10^{-8}	4×10^{-12}
$e^- \nu \mu^+ \mu^+$	LNV	No data	10 ⁻¹²
$\pi^+ X^0$	New Particle	$5.9 imes 10^{-11}m_{X^0}=0$	10 ⁻¹²
$\pi^+\chi\chi$	New Particle	_	10 ⁻¹²
$\pi^+\pi^+e^-\nu$	$\Delta S \neq \Delta Q$	1.2×10^{-8}	10-11
$\pi^+\pi^+\mu^-\nu$	$\Delta S \neq \Delta Q$	3.0×10^{-6}	10-11
$\pi^+\gamma$	Angular Mom.	2.3×10^{-9}	10 ⁻¹²
$\mu^+ u_h, u_h o u \gamma$	Heavy neutrino	Limits up to $m_{v_h} = 350 MeV$	
R _K	LU	$(2.488 \pm 0.010) \times 10^{-5}$	>×2 better
$\pi^+\gamma\gamma$	χPT	< 500 events	10 ⁵ events
$\pi^0\pi^0e^+\nu$	χPT	66000 events	O(10 ⁶)
$\pi^0\pi^0\mu^+\nu$	χPT	-	O(10 ⁵)
Kaon Physics	E	xtra material	C. Biino – SUSY 2015

New Physics Sensitivity

- Z' gauge boson mediating FCNC at tree level [A.J.Buras et al., JHEP 1302 (2013) 116; A.J.Buras et al. Eur. Phys. J. C74 (2014) 039]
- Littlest Higgs with T-parity [M. Blanke et al., Acta Phys. Polon. B 41 (2010) 657]
- Custodial Randall-Sundrum

[M. Blanke et al., JHEP 0903 (2009) 108]

• Best probe of MSSM non-MFV (still not excluded by LHC) [G. Isidori et al., JHEP 0608 (2006) 088]

Z' model

Randall - Sundrum

Littlest Higgs

Experiment	NA48/2	NA62-R _K	NA62
	(K±)	(K±)	(K+; starting)
Data taking period	2003-2004	2007-2008	2014–2017
Beam momentum, GeV/c	60	74	75
RMS momentum bite, GeV/c	2.2	1.4	0.8
Spectrometer thickness, X ₀	2.8%	2.8%	1.8%
Spectrometer P _T kick, MeV/c	120	265	270
$M(K^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-})$ resolution, MeV/c^{2}	1.7	1.2	0.8
K [±] decays in fiducial volume	2×10 ¹¹	2×10 ¹⁰	1.2×10 ¹³
Main trigger	multi-track;	e±	Κ _{πνν} +
	$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$		

Kaon beams: sources of large clean tagged π^0 samples.

- ♦ In a K[±] beam, ratio of number of decays $\pi^0/K^{\pm} \approx 1/3$.
- ↔ Principal π^0 source: $K^{\pm} \rightarrow \pi^{\pm} \pi^0$ (known as $K_{2\pi}$).
- * Best data on many rare/forbidden π^0 decays come from K experiments.