

Motivation/Outline

- Supersymmetry can not be excluded,
 SUSY can only be discovered
- What if we find a heavier SUSY?
 - What kind of SUSY it is?
- Use a SUSY golden decay
- $\begin{array}{c|c}
 & \ell^{\pm} \\
 & \ell^{\pm} \\
 & \chi_{2}^{0} & \tilde{\ell}_{L}
 \end{array}$
- To recover masses of supersymmetric particles
- Bayesian fit to reconstruct SUSY parameters:
 - From golden decay only
 - Golden decay + Higgs
 - Golden decay + Higgs + Ωh²

Bayesian theorem

In Bayesian theory, our degree of belief in the preposition changes rationally the probability of the posterior observation.

$$p(\theta, \psi|d) = \frac{p(d|\xi)\pi(\theta, \psi)}{p(d)}$$

- $p(d|\xi) = \mathcal{L}$: likelihood
- $\pi(\theta,\psi)$: prior pdf
- p(d): evidence (normalization factor)

- $m = (\theta, \psi)$ model's all relevant parameters
- model parameters θ
- relevant SM param's $|\psi=M_t,m_b(m_b)^{\overline{MS}},lpha_s^{\overline{MS}},lpha_{
 m em}(M_Z)^{\overline{MS}}$
- $m{\xi}=(\xi_1,\xi_2,\ldots,\xi_m)$: set of derived variables (observables): $m{\xi}(m)$
- **9** d: data $(\Omega_{\rm CDM}h^2, b \rightarrow s\gamma, m_h, \text{ etc})$

Focus on CMSSM

- Constrained Minimal Supersymmetric Standard Model
- Might appear less natural than before, however:
 - It correctly reproduces both the Higgs boson mass and the DM relic abundance in the "unnatural" multi-TeV regions of mass parameters
 - It also remains compatible with all experimental data,
 with the exception of (g-2)_u
- Unification of MSSM soft masses at GUT scale:
 - $m_1/2 = M_1 = M_2 = M_3 \rightarrow Common gaugino mass$
 - **mo** → Common scalar mass
 - **Ao** → Common trilinear
 - $tan \beta \rightarrow Ratio of Higgs vevs$
 - sgn µ

 Run parameters to low scale with renormalisation group equations to calculate masses at 1 TeV scale

SUSY must be heavier

From our recent fit:

- M_{SUSY} > than expected
- Decreased mo in ~1TeV higgsino region due to higgs corrections
- Posterior in A-funnel region increases due to better fit to higgs mass
- Focus point region disfavoured by LUX

Reduced posterior in stau-coannihilation 4
 region (Bino DM region) due to LHC constraints,

but M_{SUSY} < 1 TeV still probable

= / = 68%/95% region

Signature of SUSY

- Golden channel
- Allows to reconstruct sparticle masses from kinematic edges

- Many studies made in pre-LHC era for light SUSY
 - Our previous analysis

 (arXiv:1106.5117, arXiv:0907.0594)
- Our goal: check if we can recover sparticles masses from kinematic edges for higher SUSY and reconstruct model parameters?

Methodology

- Pick a CMSSM point allowed by experiments (e.g. m_h , Planck relic density Ωh^2 , direct searches)
- Monte Carlo analysis for CMSSM point at 14 TeV
 - Perform MC simplified (Gen Level) analysis to simulate sparticle mass measurements from golden decay
- Bayesian reconstruction of CMSSM parameters with simulated sparticle mass measurements

CMSSM point

$$ilde{q} > ilde{\chi}_2^0 > ilde{\ell}$$
 $ilde{g} > ilde{q}$ to shut $ilde{q} o ilde{g}q$ spoller

- → In CMSSM, it means m₁/₂ > m₀
- Stau-coannihilation region allowed in CMSSM with golden decay

 $\tilde{\ell}_L$

Benchmark CMSSM point

- Search for a good point with golden decay
 - High mass, above LHC limits: m1/2 = 900GeV
- Minuit to find the point with:
 - $m_h = 125 GeV$ within errors
 - Ω h² ≈ WMAP/PLANCK (0.1197)
 - Golden decay
- The benchmark CMSSM point: satisfies reasonable 9 measurements: m_h , DM relic density, $b \rightarrow s\gamma$, $B_u \rightarrow \tau \nu$, $B_s \rightarrow \mu^+\mu^-$, m_W , $\sin^2\theta_{\rm eff}$, M_t ΔM_{B_s}
- $\Omega h^2 = 0.1390$ ~ agreement with the Plack measurements

CMSSM:
m1/2 = 900GeV
mo = 315GeV
$tan \beta = 11$
Ao = -2550GeV
sgn μ = + 1

Particle Mass (GeV):								
$\chi_1^0 = \chi$	382.8	\tilde{e}_L	679.8	$ ilde{d}_L$	1835	h	124.1	
χ_2^0	728.7	$ ilde{e}_R$	463.4	\tilde{d}_R	1754	H	1741	
χ_3^0	1645	$ ilde{ u}_e$	675.1	\tilde{u}_L	1834	A	1742	
χ_4^0	1649	$ert ilde{ au}_1$	384.6	\tilde{u}_R	1762	H^{\pm}	1744	
χ_1^{\pm}	728.9	$ ilde{ au}_2$	659.9	\tilde{b}_1	1509			
χ_2^{\pm}	1649	$\tilde{ u}_{ au}$	651.4	\tilde{b}_2	1726			
$ ilde{g}$	1985			$ ilde{t}_1 $	984.1			
				\tilde{t}_2	1552			

MC Simuations

- MC Pythia (Gen Level) simulation for @ 14 TeV
 - Particle mass spectrum from SoftSUSY
- CMSSM $\sigma = 34.5/fb$
 - Run III LHC L = 300/fb \rightarrow N_{total} = ~10.000 events
- Selection classical SUSY with lepton cuts Very simplified assumptions:
- Detector acceptance:
 - Isolated leptons:
 pt > 10 GeV, |η^e|< 2.4, |η^μ|< 2.4
 - AntikT jets: pt > 50 GeV, $|\eta^{jet}|$ < 5
- Total selection efficiency: 0.10

- Event selection:
 - At least 2 opposite sign leptons
 - At least 4 jets
 - $pt^{1st jet} > 100 GeV$
 - Z peak veto:89 GeV > minv_II > 95 GeV

Endpoints

- Reconstruction of mass invariant distribution with endpoints:
 - 1 lepton pair (ll) OSSF (ee+μμ-μe)
 - 2-3 each lepton with the jet (ℓq and $\ell' q$)
 - 4 the jet and both leptons (llq)
 - 5 threshold $\ell\ell q$, with $\theta > \pi/2$ between leptons in slepton frame
- To recover masses from functions

$$\begin{split} m_{\ell\ell}^2 &= \frac{\left(m_{\tilde{\chi}_2^0}^2 - m_{\tilde{l}}^2\right) \left(m_{\tilde{l}}^2 - m_{\tilde{\chi}_1^0}^2\right)}{m_{\tilde{l}}^2} \\ m_{\ell q, \, \text{near}}^2 &= \frac{\left(m_{\tilde{q}}^2 - m_{\tilde{\chi}_2^0}^2\right) \left(m_{\tilde{\chi}_2^0}^2 - m_{\tilde{l}}^2\right)}{m_{\tilde{\chi}_1^0}^2} \\ m_{\ell q, \, \text{far}}^2 &= \frac{\left(m_{\tilde{q}}^2 - m_{\tilde{\chi}_2^0}^2\right) \left(m_{\tilde{l}}^2 - m_{\tilde{\chi}_1^0}^2\right)}{m_{\tilde{l}}^2} \\ m_{\ell qq}^2 &= \max \left[\frac{\left(m_{\tilde{q}}^2 - m_{\tilde{\chi}_2^0}^2\right) \left(m_{\tilde{l}}^2 - m_{\tilde{\chi}_1^0}^2\right)}{m_{\tilde{l}}^2}, \frac{\left(m_{\tilde{q}}^2 - m_{\tilde{l}}^2\right) \left(m_{\tilde{l}}^2 - m_{\tilde{\chi}_1^0}^2\right)}{m_{\tilde{l}}^2} \right] \text{ arXiv:0410303} \end{split}$$

Sparticle mass recovery

- Five mass invariant distribution fitted
 to the get endpoint position with the error in Root
 Analysis of the properties of
- Fit unknown sparticle masses to five endpoints with Root
 - Single solution for a sparticle mass with statistical errors
- Errors are correlated ⇒ covariance matrix
- C matrix basis in GeV² $(m_{\tilde{\chi}_1^0}, m_{\tilde{\ell}}, m_{\tilde{\chi}_2^0}, m_{\tilde{q}})$

$$\sigma = \begin{pmatrix} 132.0 & 18.4 & 31.9 & 175.8 \\ \cdot & 25.5 & 24.2 & 21.3 \\ \cdot & \cdot & 24.8 & 39.6 \\ \cdot & \cdot & \cdot & 401.1 \end{pmatrix}$$

Covariance matrix

Covariance matrix is diagonalised to find errors:

$$V \sigma^{-1} V^T \approx \text{diag} \left[(0.3 \,\text{GeV})^{-2}, (5.6 \,\text{GeV})^{-2}, (7.5 \,\text{GeV})^{-2}, (22.3 \,\text{GeV})^{-2} \right]$$

[GeV]

$$0.3 = 0.1 \cdot m_{\chi_1^0} + 0.7 \cdot m_{\tilde{\ell}} - 0.8 \cdot m_{\chi_2^0} + 0.0 \cdot m_{\tilde{q}} \approx \frac{1}{\sqrt{2}} (m_{\tilde{\ell}} - m_{\chi_2^0}),$$

5.6 =
$$0.6 \cdot m_{\chi_1^0} - 0.6 \cdot m_{\tilde{\ell}} - 0.4 \cdot m_{\chi_2^0} - 0.2 \cdot m_{\tilde{q}}$$
,

7.5 =
$$0.6 \cdot m_{\chi_1^0} - 0.4 \cdot m_{\tilde{\ell}} - 0.5 \cdot m_{\chi_2^0} + 0.4 \cdot m_{\tilde{q}}$$
,

22.3 =
$$0.4 \cdot m_{\chi_1^0} + 0.1 \cdot m_{\tilde{\ell}} + 0.1 \cdot m_{\chi_2^0} + 0.9 \cdot m_{\tilde{q}} \approx m_{\tilde{q}}$$
.

• Two (one very) well determined directions $\sigma \le (1)$ 10 GeV

Statistical method

- To recover original CMSSM parameters from simulated sparticle mass measurements
- Use Bayesian statistics . Bayes theorem:

$$\underbrace{p\left(m_0,m_{1/2},\tan\beta,A_0|\mathbf{D}\right)}_{\text{Posterior density}} \propto \underbrace{\mathcal{L}\left(\mathbf{D}|m_0,m_{1/2},\ldots\right)}_{\text{Likelihood}} \times \underbrace{\pi\left(m_0,m_{1/2},\ldots\right)}_{\text{Prior}}$$

- We want to find posterior density for CMSSM, given golden decay measurements
- Marginalise posterior, to remove parameter dependencies, e.g., $p\left(m_0,m_{1/2}|\mathbf{D}\right) = \int p\left(m_0,m_{1/2},\tan\beta,A_0|\mathbf{D}\right)\,\mathrm{d}A_0\,\mathrm{d}\tan\beta$
- Find "credible regions:" Smallest region A such that $\int_A p\left(m_0, m_{1/2} | \mathbf{D}\right)^\top dm_0 dm_{1/2} = 95\%$

Statistical method

- Priors reflect "prior belief" in parameter space
- Choose **flat priors**, expect prior independence
- Likelihood is a multivariate Gaussian from our golden decay simulations

$$\mathcal{L}_{\text{golden decay}} = \exp\left[-\frac{1}{2}(M - M_{\text{benchmark}})C^{-1}(M - M_{\text{benchmark}})^{T}\right]$$

- **M** is a function of $M=(m_{\tilde{\chi}_1^0},m_{\tilde{\ell}},m_{\tilde{\chi}_2^0},m_{\tilde{q}})$ and C is a covariance matrix from our MC
- In the next step, apply Gaussian likelihoods for $\Omega h^2 = 0.1186 \pm 0.0031 \pm 10\%$ and $m_h = 125.8 \pm 0.5 \pm 3 \text{GeV}$
- Posteriors are calculated with MultiNest from all priors and likelihoods

Parameter	Prior range	Distribution
m_0	(0.1, 4) TeV	Flat
$m_{1/2}$	$(0.1, 2) \mathrm{TeV}$	Flat
A_0	$(-4, 4) \mathrm{TeV}$	Flat
$\tan \beta$	(3, 62)	Flat
$\operatorname{sign} \mu$	+1	Fixed
M_t	$173.5\mathrm{GeV}$	Fixed
$m_b(m_b)^{\overline{MS}}$	$4.18\mathrm{GeV}$	Fixed
$1/\alpha_{\rm em}(M_Z)^{\overline{MS}}$	127.944	Fixed
$\alpha_s(M_Z)^{\overline{MS}}$	0.1184	Fixed

Our method

- [1] Assume SUSY CMSSM benchmark point is "true"
- [2] Assume sparticle masses measured by golden decay at LHC \sqrt{s} = 14 TeV
- [3] Find expected errors (covariance matrix) from MC
- [4] Assume flat priors for CMSSM parameters mo, m1/2, Ao, tan β
- [5] Fit CMSSM to golden decay measurements with Bayesian statistics
- [6] Afterwards, add information from m_h and Ωh² to see how much it improves recovery

How well do we recover the original benchmark parameters?

Results – CMSSM reco

- With the endpoint information alone, recovered "true"
 benchmark point
- Single correct solution found, the benchmark point is in 68% region
- Two orthogonal directions in the parameter space are visible: anti-diagonal mo-m1/2 and diagonal mo+m1/2, which correspond to the first (0.3 GeV) and second (5.6 GeV) eigenvectors of C matrix

CMSSM reconstruction

- Ao is not well reconstructed
- Broadened the credible region in the mo-m₁/₂ direction
- tan β determined to within a few units

CMSSM reco

Adding more data to fit

- The credible regions shrink successively as the data is added,
 though two orthogonal directions in the parameter space remain visible
 - The diagonal mo+m1/2 direction of the is only marginally shrunk,
 whereas the anti-diagonal mo-m1/2 direction is squashed for (Ao, tan β)
- When we add **higgs**, Ao must be < 0.5 TeV to increase the Higgs boson mass via maximal mixing $m_{ ilde{ au}_1} pprox m_{\chi_1^0}$ Increases in Higgs boson mass from increasing m1/2 and mo to increase stop masses are negligible
- When we add Planck, we enforce mass degeneracy so that staus and neutralinos coannihilate effectively and reduce the relic density to the Planck value
- This is rather fortunate higgs and Planck constrain the direction of parameter space that was poorly constrained by LHC

Direct Dark Matter searches

- LHC prediction indicate that in our discovery scenario
 the DM might be within reach of direct detection experiments
 - should be accessible at a 1-tonne detectors whose reach is expected to be < 10-46 cm²
- The resolution and bias of σ^{SI} improves slightly as data is added, especially Planck, but the resolution of the neutralino mass is not much improved

Conclusions

- We demonstrated the possibility of reconstructing CMSSM parameters with Bayesian statistics
- If SUSY is found in the LHC, we can check existence of the golden decay
- We found that sparticle masses can be measured with good precision for high mass CMSSM benchmark point
- We found that CMSSM parameters can be well recovered
 - Improved when additional information from Ωh^2 is added, but less so for m_h

References:

[1] A. Fowlie, M. Kazana, L. Roszkowski, Reconstructing CMSSM parameters at the LHC with sV=14 TeV via the golden decay channel, arXiv:1106.5117, Dec 2014