LITTLE CONFORMAL SYMMETRY

Rachel Houtz SUSY 2015

In Collaboration with John Terning (UC Davis), Kit Colwell (UC Davis)

Rachel Houtz

Cancelling the Divergence SUSY's Claim to Fame

SUSY guarantees such a cancellation

Terning. Modern Supersymmetry: Dynamics and Duality. Oxford University Press USA, 2006.

Rachel Houtz SUSY 2015

Where are the superpartners?

Summary of CMS SUSY Results* in SMS framework

ICHEP 2014

A cancellation is possible if y_t and g_N satisfy this relationship.

What if this is a result of an underlying Symmetry?

M. J. G. Veltman, "The Infrared-Ultraviolet Connetion," Acta Phys. Polon. B **12** (1981) 437.

- > Impose Conformal Symmetry to derive this relationship between g_N and y_t
- Allows for a naturally small Higgs mass with superpartners >10 TeV, similar to Little Higgs models

N. Arkani-Hamed, A. G. Cohen, T. Gregoire, and J. G. Wacker, Phenomenology of electroweak symmetry breaking from theory space, hep-ph/0202089

$$0 = -2N_C y_t^2 + 3C_2(S)g_N^2$$

$$0 = -2N_C\Gamma_t + 3C_2(S)\alpha_N$$

$$\Gamma_t = \frac{3C_2(S)}{2N_C} \alpha_N$$

Symmetry Condition

$$\frac{b_N}{a} = \frac{3C_2(S)}{2N_C}$$

Ensures that both the quadratic divergence is cancelled and the top Yukawa coupling is at a fixed point.

 $\Rightarrow a = \frac{1}{2}N + 4 \& b_N = 3C_2(t_R)$

Symmetry Condition

$$\frac{b_N}{a} = \frac{3C_2(S)}{2N_C} \implies N = 4$$
$$\Gamma_t = \frac{15}{16}\alpha_N$$

Quadratic Divergence Cancelled

- Top Yukawa at a fixed point
- New Gauge coupling at a fixed point.

Gauge Coupling Banks-Zaks Fixed Point

M E. Machacek and M. T. Vaughn, Nucl Phys. B 222. 83 (1983)

$$\beta(x_N) \ni \left(m \sum_{i=1}^{n} m + m \sum_{i=1}^{n} m \right) + \left(m m + m \sum_{i=1}^{n} m + \dots \right)$$

 β –function coefficients depend on the matter content of the UV theory

Gauge Coupling Banks-Zaks Fixed Point

- •Remember, the values of α is already set from our Γ/α relation.
- •In order to make this value of α coincide with its fixed point, we added new matter to the UV theory

Little Conformal Symmetry: Including the Standard Model

More Specifically ...

Allow t_R to be charged under $SU(3)_A$ and the other quarks to be charged under $SU(3)_B$

• $SU(3)_A$ mixes with $SU(3)_B$ to form $SU(3)_C$ • $SU(3)_A$ is a subgroup of the larger gauge group SU(N)

Little Conformal Symmetry: Matter Content

Impose symmetry relation to set the top Yukawa coupling at its fixed point:

yield quadratic divergence cancelation. $\Gamma_t = \frac{15}{16} \alpha_N$

Yukawa and Gauge Coupling Fixed Points

15

Rachel Houtz SUSY 2015

Rachel Houtz SUSY 2015

Conclusions

 Conformal symmetry can produce a cancellation of the Higgs mass quadratic divergence with a new SU(N) gauge boson

This cancellation prevents the Higgs mass from being sensitive to new physics up to the10 TeV scale

To do this with a theory that includes the SM, we must get creative with the new SU(N).

Set up $b_N \alpha_N \gg b_3 \alpha_3$ or Embed SU(3) in SU(N)

Rachel Houtz SUSY 2015

Back-up Slides

