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Context: Why lattice supersymmetry
Lattice discretization provides non-perturbative,

gauge-invariant regularization of vectorlike gauge theories

Amenable to numerical analysis
−→ complementary approach to study strongly coupled field theories

Proven success for QCD; many potential susy applications:
Compute Wilson loops, spectrum, scaling dimensions, etc.,

complementing perturbation theory, holography, bootstrap, . . .

Further direct checks of conjectured dualities

Predict low-energy constants from dynamical susy breaking

Validate or refine AdS/CFT-based modelling
(e.g., QCD phase diagram, condensed matter systems)
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Context: Why lattice supersymmetry
Lattice discretization provides non-perturbative,

gauge-invariant regularization of vectorlike gauge theories

Amenable to numerical analysis
−→ complementary approach to study strongly coupled field theories

Proven success for QCD; many potential susy applications:
Compute Wilson loops, spectrum, scaling dimensions, etc.,

complementing perturbation theory, holography, bootstrap, . . .

Further direct checks of conjectured dualities

Predict low-energy constants from dynamical susy breaking

Validate or refine AdS/CFT-based modelling
(e.g., QCD phase diagram, condensed matter systems)

Many ideas probably infeasible. . . Relatively few have been explored
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Context: Why not lattice supersymmetry

Problem:
{

QI
α,Q

J
α̇

}
= 2δIJσµ

αα̇Pµ

but infinitesimal translations don’t exist in discrete space-time

Broken algebra =⇒ relevant susy-violating operators
(typically many, especially with scalar fields)

Fine-tuning their couplings to restore supersymmetry
is generally not practical in numerical lattice calculations

Solution: Preserve (some subset of) the susy algebra on the lattice
Possible for 4d N = 4 SYM, and lower-dim. systems

Same lattice formulation obtained from orbifolding / deconstruction
and from “topological” twisting — cf. arXiv:0903.4881 for review
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Exact susy on the lattice

Intuitive picture of Geometric-Langlands twist for N = 4 SYM
Q1

α Q2
α Q3

α Q4
α

Q
1
α̇ Q

2
α̇ Q

3
α̇ Q

4
α̇


= Q+Qµγµ +Qµνγµγν +Qµγµγ5 +Qγ5

−→ Q+Qaγa +Qabγaγb

with a,b = 1, · · · ,5

Q’s transform with integer spin under “twisted rotation group”

SO(4)tw ≡ diag
[
SO(4)euc ⊗ SO(4)R

]
SO(4)R ⊂ SO(6)R

This change of variables gives a susy subalgebra {Q,Q} = 2Q2 = 0
This subalgebra can be exactly preserved on the lattice
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Twisted N = 4 SYM fields and Q
Everything transforms with integer spin under SO(4)tw — no spinors

QI
α and Q

I
α̇ −→ Q, Qa and Qab

ΨI and Ψ
I −→ η, ψa and χab

Aµ and ΦIJ −→ Aa = (Aµ, φ) + i(Bµ, φ) and Aa

The twisted-scalar supersymmetry Q acts as

Q Aa = ψa Q ψa = 0

Q χab = −Fab Q Aa = 0
Q η = d Q d = 0

↖ bosonic auxiliary field with e.o.m. d = DaAa

1 Q directly interchanges bosonic←→ fermionic d.o.f.

2 The susy subalgebra Q2 · = 0 is manifest
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Lattice N = 4 SYM
The lattice theory is nearly a direct transcription,

despite breaking the 15 Qa and Qab

Covariant derivatives −→ finite difference operators

Complexified gauge fields Aa −→ gauge links Ua

Q Aa −→Q Ua = ψa Q ψa = 0

Q χab = −Fab Q Aa −→Q Ua = 0
Q η = d Q d = 0

(Complexification =⇒ U(N) = SU(N)⊗ U(1) gauge invariance)

Supersymmetric lattice action (QS = 0)
follows from Q2 · = 0 and Bianchi identity

S =
N

2λlat
Q

(
χabFab + ηDaUa −

1
2
ηd

)
− N

8λlat
εabcde χabDc χde
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Five links in four dimensions −→ A∗4 lattice

—Can picture A∗4 lattice
as 4d analog of 2d triangular lattice

—Basis vectors are non-orthogonal
and linearly dependent

—Preserves S5 point group symmetry

S5 irreps precisely match onto irreps of twisted SO(4)tw

5 = 4⊕ 1 : ψa −→ ψµ, η

10 = 6⊕ 4 : χab −→ χµν , ψµ

S5 −→ SO(4)tw in continuum limit restores the rest of Qa and Qab
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Twisted N = 4 SYM on the A∗4 lattice

High degree of exact symmetry: gauge invariance + Q + S5

Several important analytic consequences:

Moduli space preserved to all orders of lattice perturbation theory
−→ no scalar potential induced by radiative corrections

β function vanishes at one loop in lattice perturbation theory

Real-space RG blocking transformations preserve Q and S5

Only one log. tuning to recover Qa and Qab in the continuum

Not quite suitable for numerical calculations
Exact zero modes and flat directions must be regulated,

especially important in U(1) sector
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Stabilized lattice action [arXiv:1505.03135]

S =
N

2λlat
Q

(
χabFab + ↓ − 1

2
ηd

)
− N

8λlat
εabcde χabDc χde + µ2V

η

(
DaUa + G

∑
P

[detP − 1] IN

)

—Scalar potential V = 1
2Nλlat

(
Tr

[
UaUa

]
− N

)2 lifts SU(N) flat directions

—Constraint on plaquette det. lifts U(1) zero mode & flat directions
Crucial that detP deformation preserves Q

Scalar potential softly breaks Q

Ward identity violations 〈QO〉 ∝ a2

approaching a→ 0 continuum limit

Effective O(a) improvement
since Q forbids all dim-5 operators
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Physics result: Static potential is Coulombic at all λ

Extract static potential V (r) from rectangular (r × T ) Wilson loops

W (r ,T ) ∝ e−V (r) T

Fit V (r) to Coulombic
or confining form

V (r) = A− C/r

V (r) = A− C/r + σr

C is Coulomb coefficient
σ is string tension

Fits to confining form always produce vanishing string tension σ = 0
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Coupling dependence of Coulomb coefficient

Weak-coupling perturbation theory predicts C(λ) = λ/(4π) +O(λ2)

AdS/CFT predicts C(λ) ∝
√
λ for N →∞, λ→∞, λ� N

N = 2 results agree with perturbation theory for λ . 2

N = 3 results bend down for λ & 1 — approaching AdS/CFT?
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Physics result: Konishi operator scaling dimension

The Konishi operator is the simplest conformal primary operator

OK =
∑

I

Tr
[
ΦIΦI] CK (r) ≡ OK (x + r)OK (x) ∝ r−2∆K

There are many predictions for its scaling dim. ∆K (λ) = 2 + γK (λ)

From weak-coupling perturbation theory,
related to strong coupling by 4πN

λ ←→ λ
4πN S duality

From holography for N →∞ and λ→∞ but λ� N

Upper bounds from the conformal bootstrap program

Only lattice gauge theory can access nonperturbative λ at moderate N
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Konishi operator on the lattice

Extract scalar fields from polar decomposition of complexified links

Ua ' Ua (IN + ϕa) ÔK =
∑

a

Tr [ϕaϕa] OK = ÔK −
〈
ÔK

〉

CK (r) = OK (x + r)OK (x) ∝ r−2∆K

Obvious sensitivity to volume
as desired for conformal system

Applicable lattice techniques:
—Finite-size scaling (FSS)
—Monte Carlo RG (MCRG)

Promising preliminary results for ∆K from FSS and MCRG analyses. . .
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Konishi scaling dimension from Monte Carlo RG

Eigenvalues of MCRG stability matrix −→ scaling dimensions

RG blocking parameter ξ set by
matching plaquettes for L vs. L/2

Horizontally displaced points use
different auxiliary couplings µ & G

Currently running larger λlat
and larger N = 3, 4

Uncertainties from weighted histogram of results for. . .

? 1 & 2 RG blocking steps ? Blocked volumes 34 through 84

? 1–5 operators in stability matrix
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Recapitulation and outlook

Rapid recent progress in lattice supersymmetry
Lattice promises non-perturbative insights from first principles
Lattice N = 4 SYM is practical thanks to exact Q susy
Public code to reduce barriers to entry

Selected results from ongoing calculations
Static potential is Coulombic at all couplings,
C(λ) confronted with perturbation theory and AdS/CFT
Promising initial Konishi anomalous dimension at weak coupling

Many more directions are being — or can be — pursued
Understanding the (absence of a) sign problem
Systems with less supersymmetry, in lower dimensions,
including matter fields, exhibiting spontaneous susy breaking, . . .
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Thank you!
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Thank you!

Collaborators
Simon Catterall, Poul Damgaard, Tom DeGrand and Joel Giedt

Funding and computing resources
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Supplement: Potential sign problem

In lattice gauge theory we compute operator expectation values

〈O〉 =
1
Z

∫
[dU ][dU ]O e−SB [U ,U ] pfD[U ,U ]

pfD = |pfD|eiα can be complex for lattice N = 4 SYM
−→ Complicates interpretation of

[
e−SB pfD

]
as Boltzmann weight

Instead compute phase-quenched (pq) observables and reweight:

〈
Oeiα

〉
pq

=
1
Zpq

∫
[dU ][dU ]Oeiα e−SB |pfD| =⇒ 〈O〉 =

〈
Oeiα〉

pq〈
eiα

〉
pq

Sign problem: This breaks down if
〈
eiα〉

pq is consistent with zero
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Pfaffian phase dependence on volume and coupling

Left: 1− 〈cos(α)〉 � 1 independent of volume and N at λlat = 1

Right: New 44 results at 4 ≤ λlat ≤ 8 show much larger fluctuations

Currently filling in more volumes and N

Extremely expensive analysis despite new parallel algorithm:
∼40×50 hours per 44 point; O(n3) scaling
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Two puzzles posed by the sign problem
With periodic temporal boundary conditions for the fermions

we have an obvious sign problem,
〈
eiα〉

pq consistent with zero

With anti-periodic BCs and all else the same eiα ≈ 1,
phase reweighting has negligible effect

Why such sensitivity to the BCs?

Also, other observables
are nearly identical

for these two ensembles

Why doesn’t the sign problem
have observable effects?
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Backup: Public code for lattice N = 4 SYM

The lattice action is obviously very complicated
(For experts: The fermion operator involves &100 gathers)

To reduce barriers to entry our parallel code is publicly developed at
github.com/daschaich/susy

Evolved from MILC lattice QCD code, presented in arXiv:1410.6971
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Backup: Failure of Leibnitz rule in discrete space-time

Given that
{

Qα,Qα̇

}
= 2σµ

αα̇Pµ = 2iσµ
αα̇∂µ is problematic,

why not try
{

Qα,Qα̇

}
= 2iσµ

αα̇∇µ for a discrete translation?

Here ∇µφ(x) = 1
a [φ(x + aµ̂)− φ(x)] = ∂µφ(x) + a

2∂
2
µφ(x) +O(a2)

Essential difference between ∂µ and ∇µ on the lattice, a > 0

∇µ [φ(x)χ(x)] = a−1 [φ(x + aµ̂)χ(x + aµ̂)− φ(x)χ(x)]

= [∇µφ(x)]χ(x) + φ(x)∇µχ(x) + a [∇µφ(x)]∇µχ(x)

We only recover the Leibnitz rule ∂µ(fg) = (∂µf )g + f∂µg when a→ 0
=⇒ “Discrete supersymmetry” breaks down on the lattice

(Dondi & Nicolai, “Lattice Supersymmetry”, 1977)
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Backup: Twisting←→ Kähler–Dirac fermions

The Kähler–Dirac representation is related to the spinor QI
α,Q

I
α̇ by

Q1
α Q2

α Q3
α Q4

α

Q
1
α̇ Q

2
α̇ Q

3
α̇ Q

4
α̇


= Q+Qµγµ +Qµνγµγν +Qµγµγ5 +Qγ5

−→ Q+Qaγa +Qabγaγb

with a,b = 1, · · · ,5

The 4× 4 matrix involves R symmetry transformations along each row
and (euclidean) Lorentz transformations along each column

=⇒ Kähler–Dirac components transform under “twisted rotation group”

SO(4)tw ≡ diag
[
SO(4)euc ⊗ SO(4)R

]
↑

only SO(4)R ⊂ SO(6)R
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Backup: A∗4 lattice with five links in four dimensions

Aa = (Aµ, φ) may remind you of dimensional reduction

On the lattice we want to treat all five Ua symmetrically
to obtain S5 −→ SO(4)tw symmetry

—Start with hypercubic lattice
in 5d momentum space

—Symmetric constraint
∑

a ∂a = 0
projects to 4d momentum space

—Result is A4 lattice
−→ dual A∗4 lattice in real space
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Backup: Hypercubic representation of A∗4 lattice

In the code it is very convenient to represent the A∗4 lattice
as a hypercube with a backwards diagonal
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Backup: More on flat directions
1 Complex gauge field =⇒ U(N) = SU(N)⊗ U(1) gauge invariance

U(1) sector decouples only in continuum limit

2 Q Ua = ψa =⇒ gauge links must be elements of algebra
Resulting flat directions required by supersymmetric construction

but must be lifted to ensure Ua = IN +Aa in continuum limit

We need to add two deformations to regulate flat directions

SU(N) scalar potential ∝ µ2 ∑
a
(
Tr

[
UaUa

]
− N

)2

U(1) plaquette determinant ∼ G
∑

a 6=b (detPab − 1)

Scalar potential softly breaks Q supersymmetry
↖susy-violating operators vanish as µ2 → 0

Plaquette determinant can be made Q-invariant [arXiv:1505.03135]
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Backup: One problem with flat directions
Gauge fields Ua can move far away from continuum form IN +Aa

if Nµ2/(2λlat) becomes too small

Example for two-color (λlat, µ, κ) = (5, 0.2, 0.8) on 83×24 volume

Left: Bosonic action is stable ∼18% off its supersymmetric value

Right: Polyakov loop wanders off to ∼109
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Backup: Another problem with U(1) flat directions
Flat directions in U(1) sector can induce transition to confined phase

This lattice artifact is not present in continuum N = 4 SYM

Around the same λlat ≈ 2. . .
Left: Polyakov loop falls towards zero

Center: Plaquette determinant falls towards zero
Right: Density of U(1) monopole world lines becomes non-zero
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Backup: Soft susy breaking
Before 2015 we added the detP constraint directly to the lattice action

Ssoft =
N

2λlat
µ2

(
1
N

Tr
[
UaUa

]
− 1

)2

+ κ |detPab − 1|2

Both terms explicitly break Q but detPab effects dominate

Left: The breaking is soft — guaranteed to vanish as µ, κ −→ 0

Right: Soft Q breaking is also suppressed ∝ 1/N2
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Backup: More on supersymmetric constraints

arXiv:1505.03135 introduces method to impose Q-invariant constraints

Basic idea: Modify aux. field equations of motion −→ moduli space

d(n) = D(−)
a Ua(n) −→ D(−)

a Ua(n) + GO(n)IN

Applied to plaquette determinant, O(n) =
∑

a 6=b [detPab(n)− 1],
produces much smaller violations of QWard identity 〈sB〉 = 9N2/2
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Backup: Code performance—weak and strong scaling
These results from arXiv:1410.6971 use an old (“unimproved”) action

Left: Strong scaling for U(2) and U(3) 163×32 RHMC

Right: Weak scaling for O(n3) pfaffian calculation (fixed local volume)
n ≡ 16N2L3NT is number of fermion degrees of freedom

Both plots on log–log axes with power-law fits
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Backup: Numerical costs for N = 2, 3 and 4 colors

Red: Find RHMC cost scaling ∼N5 (recall adjoint fermion d.o.f. ∝N2)

Blue: Pfaffian cost scaling consistent with expected N6

Additional factor of ∼2× from new improved action, but same scaling
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Backup: Restoration of Qa and Qab supersymmetries
Results from arXiv:1411.0166 to be revisited with the new action

Restoration of the other 15 Qa and Qab in the continuum limit
follows from restoration of R symmetry (motivation for A∗4 lattice)

Modified Wilson loops test R symmetries at non-zero lattice spacing
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Backup: N = 4 static potential from Wilson loops

Extract static potential V (r) from r × T Wilson loops

W (r ,T ) ∝ e−V (r) T V (r) = A− C/r + σr

Coulomb gauge trick from lattice QCD reduces A∗4 lattice complications
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Backup: Perturbation theory for Coulomb coefficient

For range of couplings currently being studied
(continuum) perturbation theory for C(λ) is well behaved
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Backup: More tests of the U(2) static potential

Left: Projecting Wilson loops from U(2) −→ SU(2)
=⇒ factor of N2−1

N2 = 3/4

Right: Unitarizing links removes scalars =⇒ factor of 1/2

Some results slightly above expected factors,
may be related to non-zero auxiliary couplings µ and κ / G

David Schaich (Syracuse) LatticeN = 4 SYM SUSY 2015, 25 August 19 / 19



Backup: More tests of the U(3) static potential

Left: Projecting Wilson loops from U(3) −→ SU(3)
=⇒ factor of N2−1

N2 = 8/9

Right: Unitarizing links removes scalars =⇒ factor of 1/2

Some results slightly above expected factors,
may be related to non-zero auxiliary couplings µ and κ / G
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Backup: Smearing for Konishi analyses

—As in glueball analyses, operator basis enlarged through smearing

—Use APE-like smearing (1− α) — + α
8

∑
u,

with staples built from unitary parts of links but no final unitarization
(unitarized smearing — e.g. stout — doesn’t affect Konishi)

—Average plaquette is stable upon smearing (right)
while minimum plaquette steadily increases (left)
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Backup: Scaling dimensions from Monte Carlo RG

Write system as (infinite) sum of operators Oi with couplings ci

Couplings ci flow under RG blocking transformation Rb

n-times-blocked system is H(n) = RbH(n−1) =
∑

i c(n)
i O

(n)
i

Consider linear expansion around fixed point H? with couplings c?
i

c(n)
i − c?

i =
∑

j

∂c(n)
i

∂c(n−1)
j

∣∣∣∣∣∣
H?

(
c(n−1)

j − c?
j

)
≡

∑
j

T ?
ij

(
c(n−1)

j − c?
j

)

T ?
ij is the stability matrix

Eigenvalues of T ?
ij −→ scaling dimensions of corresponding operators
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