$\mathcal{N}=4$ super Yang-Mills on a space-time lattice

David Schaich (Syracuse)

SUSY 2015, Lake Tahoe, 25 August

arXiv:1411.0166, arXiv:1505.03135, arXiv:1508.00884 \& more to come with Simon Catterall, Poul Damgaard, Tom DeGrand and Joel Giedt

Context: Why lattice supersymmetry

Lattice discretization provides non-perturbative, gauge-invariant regularization of vectorlike gauge theories

Amenable to numerical analysis
\longrightarrow complementary approach to study strongly coupled field theories
Proven success for QCD; many potential susy applications:

- Compute Wilson loops, spectrum, scaling dimensions, etc., complementing perturbation theory, holography, bootstrap, ...
- Further direct checks of conjectured dualities
- Predict low-energy constants from dynamical susy breaking
- Validate or refine AdS/CFT-based modelling
(e.g., QCD phase diagram, condensed matter systems)

Context: Why lattice supersymmetry

Lattice discretization provides non-perturbative, gauge-invariant regularization of vectorlike gauge theories

Amenable to numerical analysis
\longrightarrow complementary approach to study strongly coupled field theories
Proven success for QCD; many potential susy applications:

- Compute Wilson loops, spectrum, scaling dimensions, etc., complementing perturbation theory, holography, bootstrap, ...
- Further direct checks of conjectured dualities
- Predict low-energy constants from dynamical susy breaking
- Validate or refine AdS/CFT-based modelling
(e.g., QCD phase diagram, condensed matter systems)

Many ideas probably infeasible... Relatively few have been explored

Context: Why not lattice supersymmetry

Problem: $\left\{Q_{\alpha}^{I}, \bar{Q}_{\dot{\alpha}}^{J}\right\}=2 \delta^{\mathrm{J}} \sigma_{\alpha \dot{\alpha}}^{\mu} P_{\mu}$
but infinitesimal translations don't exist in discrete space-time
Broken algebra \Longrightarrow relevant susy-violating operators
(typically many, especially with scalar fields)
Fine-tuning their couplings to restore supersymmetry is generally not practical in numerical lattice calculations

Solution: Preserve (some subset of) the susy algebra on the lattice Possible for $4 \mathrm{~d} \mathcal{N}=4$ SYM, and lower-dim. systems

Same lattice formulation obtained from orbifolding / deconstruction and from "topological" twisting - cf. arXiv:0903.4881 for review

Exact susy on the lattice

Intuitive picture of Geometric-Langlands twist for $\mathcal{N}=4$ SYM

Q's transform with integer spin under "twisted rotation group"

$$
\mathrm{SO}(4)_{t w} \equiv \operatorname{diag}\left[\mathrm{SO}(4)_{\mathrm{euc}} \otimes \mathrm{SO}(4)_{R}\right] \quad \mathrm{SO}(4)_{R} \subset \mathrm{SO}(6)_{R}
$$

This change of variables gives a susy subalgebra $\{\mathcal{Q}, \mathcal{Q}\}=2 \mathcal{Q}^{2}=0$ This subalgebra can be exactly preserved on the lattice

Twisted $\mathcal{N}=4$ SYM fields and \mathcal{Q}

Everything transforms with integer spin under $\mathrm{SO}(4)_{t w}$ - no spinors

$$
\begin{aligned}
& \mathcal{Q}_{\alpha}^{\mathrm{I}} \text { and } \bar{Q}_{\dot{\alpha}}^{\mathrm{I}} \longrightarrow \mathcal{Q}, \mathcal{Q}_{a} \text { and } \mathcal{Q}_{a b} \\
& \Psi^{\mathrm{I}} \text { and } \bar{\psi}^{\mathrm{I}} \longrightarrow \eta, \psi_{a} \text { and } \chi_{a b} \\
& A_{\mu} \text { and } \Phi^{\mathrm{IJ}} \longrightarrow \mathcal{A}_{a}=\left(A_{\mu}, \phi\right)+i\left(B_{\mu}, \bar{\phi}\right) \text { and } \overline{\mathcal{A}}_{a}
\end{aligned}
$$

The twisted-scalar supersymmetry \mathcal{Q} acts as
$\mathcal{Q} \mathcal{A}_{a}=\psi_{a}$
$\mathcal{Q} \psi_{a}=0$
$\mathcal{Q} \chi_{a b}=-\overline{\mathcal{F}}_{a b}$
$\mathcal{Q} \overline{\mathcal{A}}_{a}=0$
$\mathcal{Q} \eta=d$
$\mathcal{Q} d=0$
bosonic auxiliary field with e.o.m. $d=\overline{\mathcal{D}}_{a} \mathcal{A}_{a}$
(1) \mathcal{Q} directly interchanges bosonic \longleftrightarrow fermionic d.o.f.
(2) The susy subalgebra $\mathcal{Q}^{2} \cdot=0$ is manifest

Lattice $\mathcal{N}=4$ SYM

The lattice theory is nearly a direct transcription, despite breaking the $15 \mathcal{Q}_{a}$ and $\mathcal{Q}_{a b}$

- Covariant derivatives \longrightarrow finite difference operators
- Complexified gauge fields $\mathcal{A}_{a} \longrightarrow$ gauge links \mathcal{U}_{a}

$$
\begin{array}{crr}
\mathcal{Q} \mathcal{A}_{a} \longrightarrow \mathcal{Q} \mathcal{U}_{a}=\psi_{a} & \mathcal{Q} \psi_{a}=0 \\
\mathcal{Q} \chi_{a b}=-\overline{\mathcal{F}}_{a b} & \mathcal{Q} \overline{\mathcal{A}}_{a} \longrightarrow \mathcal{Q} \overline{\mathcal{U}}_{a}=0 \\
\mathcal{Q} \eta=d & \mathcal{Q} d=0
\end{array}
$$

(Complexification $\Longrightarrow \mathrm{U}(N)=\mathrm{SU}(N) \otimes \mathrm{U}(1)$ gauge invariance)

- Supersymmetric lattice action $(\mathcal{Q S}=0)$ follows from $\mathcal{Q}^{2} \cdot=0$ and Bianchi identity

$$
S=\frac{N}{2 \lambda_{\text {lat }}} \mathcal{Q}\left(\chi_{a b} \mathcal{F}_{a b}+\eta \overline{\mathcal{D}}_{a} \mathcal{U}_{a}-\frac{1}{2} \eta d\right)-\frac{N}{8 \lambda_{\text {lat }}} \epsilon_{a b c d e} \chi_{a b} \overline{\mathcal{D}}_{c} \chi_{d e}
$$

Five links in four dimensions $\longrightarrow A_{4}^{*}$ lattice
-Can picture A_{4}^{*} lattice as 4d analog of 2d triangular lattice
-Basis vectors are non-orthogonal and linearly dependent
-Preserves S_{5} point group symmetry

S_{5} irreps precisely match onto irreps of twisted $\mathrm{SO}(4)_{t w}$

$$
\begin{aligned}
\mathbf{5}=\mathbf{4} \oplus \mathbf{1}: & \psi_{a} \longrightarrow \psi_{\mu}, \bar{\eta} \\
\mathbf{1 0}=\mathbf{6} \oplus \mathbf{4}: & \chi_{a b} \longrightarrow \chi_{\mu \nu}, \bar{\psi}_{\mu}
\end{aligned}
$$

$S_{5} \longrightarrow \mathrm{SO}(4)_{t w}$ in continuum limit restores the rest of \mathcal{Q}_{a} and $\mathcal{Q}_{a b}$

Twisted $\mathcal{N}=4$ SYM on the A_{4}^{*} lattice

High degree of exact symmetry: gauge invariance $+\mathcal{Q}+S_{5}$
Several important analytic consequences:

- Moduli space preserved to all orders of lattice perturbation theory \longrightarrow no scalar potential induced by radiative corrections
- β function vanishes at one loop in lattice perturbation theory
- Real-space RG blocking transformations preserve \mathcal{Q} and S_{5}
- Only one \log. tuning to recover \mathcal{Q}_{a} and $\mathcal{Q}_{a b}$ in the continuum

Not quite suitable for numerical calculations

Exact zero modes and flat directions must be regulated,
especially important in $\mathrm{U}(1)$ sector

Stabilized lattice action

$$
\begin{gathered}
S=\frac{N}{2 \lambda_{\text {lat }}} \mathcal{Q}\left(\chi_{a b} \mathcal{F}_{a b}+\downarrow-\frac{1}{2} \eta d\right)-\frac{N}{8 \lambda_{\text {lat }}} \epsilon_{a b c d e} \chi_{a b} \overline{\mathcal{D}}_{c} \chi_{d e}+\mu^{2} V \\
\eta\left(\overline{\mathcal{D}}_{a} \mathcal{U}_{a}+G \sum_{\mathcal{P}}[\operatorname{det} \mathcal{P}-1] \mathbb{I}_{N}\right)
\end{gathered}
$$

-Scalar potential $V=\frac{1}{2 N \lambda_{\text {lat }}}\left(\operatorname{Tr}\left[\mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right]-N\right)^{2}$ lifts $\operatorname{SU}(N)$ flat directions
-Constraint on plaquette det. lifts $\mathrm{U}(1)$ zero mode \& flat directions Crucial that $\operatorname{det} \mathcal{P}$ deformation preserves \mathcal{Q}

Scalar potential softly breaks \mathcal{Q}

Ward identity violations $\langle\mathcal{Q O}\rangle \propto a^{2}$ approaching $a \rightarrow 0$ continuum limit

Effective $\mathcal{O}(a)$ improvement since \mathcal{Q} forbids all dim- 5 operators

Physics result: Static potential is Coulombic at all λ

Extract static potential $V(r)$ from rectangular $(r \times T)$ Wilson loops

$$
W(r, T) \propto e^{-V(r) T}
$$

Fit $V(r)$ to Coulombic or confining form

$$
V(r)=A-C / r
$$

$$
V(r)=A-C / r+\sigma r
$$

C is Coulomb coefficient σ is string tension

Fits to confining form always produce vanishing string tension $\sigma=0$

Coupling dependence of Coulomb coefficient

Weak-coupling perturbation theory predicts $C(\lambda)=\lambda /(4 \pi)+\mathcal{O}\left(\lambda^{2}\right)$
AdS/CFT predicts $C(\lambda) \propto \sqrt{\lambda}$ for $N \rightarrow \infty, \lambda \rightarrow \infty, \lambda \ll N$

$N=2$ results agree with perturbation theory for $\lambda \lesssim 2$
$N=3$ results bend down for $\lambda \gtrsim 1$ — approaching AdS/CFT?

Physics result: Konishi operator scaling dimension

The Konishi operator is the simplest conformal primary operator

$$
\mathcal{O}_{K}=\sum_{\mathrm{I}} \operatorname{Tr}\left[\Phi^{\mathrm{I}} \Phi^{\mathrm{I}}\right] \quad C_{K}(r) \equiv \mathcal{O}_{K}(x+r) \mathcal{O}_{K}(x) \propto r^{-2 \Delta_{K}}
$$

There are many predictions for its scaling dim. $\Delta_{K}(\lambda)=2+\gamma_{K}(\lambda)$

- From weak-coupling perturbation theory, related to strong coupling by $\frac{4 \pi N}{\lambda} \longleftrightarrow \frac{\lambda}{4 \pi N}$ S duality
- From holography for $N \rightarrow \infty$ and $\lambda \rightarrow \infty$ but $\lambda \ll N$
- Upper bounds from the conformal bootstrap program

Only lattice gauge theory can access nonperturbative λ at moderate N

Konishi operator on the lattice

Extract scalar fields from polar decomposition of complexified links

$$
\mathcal{U}_{\mathrm{a}} \simeq U_{\mathrm{a}}\left(\mathbb{I}_{N}+\varphi_{\mathrm{a}}\right) \quad \widehat{\mathcal{O}}_{K}=\sum_{a} \operatorname{Tr}\left[\varphi_{a} \varphi_{\mathrm{a}}\right] \quad \overline{\mathcal{O}}_{K}=\widehat{\mathcal{O}}_{K}-\left\langle\widehat{\mathcal{O}}_{K}\right\rangle
$$

$\bar{C}_{K}(r)=\overline{\mathcal{O}}_{K}(x+r) \overline{\mathcal{O}}_{K}(x) \propto r^{-2 \Delta_{K}}$
Obvious sensitivity to volume as desired for conformal system

Applicable lattice techniques:
-Finite-size scaling (FSS)
-Monte Carlo RG (MCRG)

Promising preliminary results for Δ_{K} from FSS and MCRG analyses...

Konishi scaling dimension from Monte Carlo RG

Eigenvalues of MCRG stability matrix \longrightarrow scaling dimensions

RG blocking parameter ξ set by matching plaquettes for L vs. $L / 2$

Horizontally displaced points use different auxiliary couplings μ \& G

Currently running larger $\lambda_{\text {lat }}$

$$
\text { and larger } N=3,4
$$

Uncertainties from weighted histogram of results for. . .

* 1 \& 2 RG blocking steps
\star Blocked volumes 3^{4} through 8^{4}
* 1-5 operators in stability matrix

Recapitulation and outlook

Rapid recent progress in lattice supersymmetry

- Lattice promises non-perturbative insights from first principles
- Lattice $\mathcal{N}=4 \mathrm{SYM}$ is practical thanks to exact \mathcal{Q} susy
- Public code to reduce barriers to entry

Selected results from ongoing calculations

- Static potential is Coulombic at all couplings, $C(\lambda)$ confronted with perturbation theory and AdS/CFT
- Promising initial Konishi anomalous dimension at weak coupling

Many more directions are being - or can be - pursued

- Understanding the (absence of a) sign problem
- Systems with less supersymmetry, in lower dimensions, including matter fields, exhibiting spontaneous susy breaking, ...

Thank you!

Thank you!

Collaborators
 Simon Catterall, Poul Damgaard, Tom DeGrand and Joel Giedt

Funding and computing resources

USQCD

Supplement: Potential sign problem

In lattice gauge theory we compute operator expectation values

$$
\langle\mathcal{O}\rangle=\frac{1}{\mathcal{Z}} \int[d \mathcal{U}][d \overline{\mathcal{U}}] \mathcal{O} e^{-S_{B}[\mathcal{U}, \bar{U}]} \operatorname{pf} \mathcal{D}[\mathcal{U}, \overline{\mathcal{U}}]
$$

$\mathrm{pf} \mathcal{D}=|\mathrm{pf} \mathcal{D}| \mathrm{e}^{i \alpha}$ can be complex for lattice $\mathcal{N}=4$ SYM
\longrightarrow Complicates interpretation of $\left[e^{-S_{B}} \operatorname{pf} \mathcal{D}\right]$ as Boltzmann weight
Instead compute phase-quenched (pq) observables and reweight:
$\left\langle\mathcal{O} e^{i \alpha}\right\rangle_{p q}=\frac{1}{\mathcal{Z}_{p q}} \int[d \mathcal{U}][d \bar{U}] \mathcal{O} e^{i \alpha} e^{-S_{B}}|p f \mathcal{D}| \quad \Longrightarrow\langle\mathcal{O}\rangle=\frac{\left\langle\mathcal{O} e^{i \alpha}\right\rangle_{p q}}{\left\langle e^{i \alpha}\right\rangle_{p q}}$
Sign problem: This breaks down if $\left\langle e^{i \alpha}\right\rangle_{p q}$ is consistent with zero

Pfaffian phase dependence on volume and coupling

Left: $1-\langle\cos (\alpha)\rangle \ll 1$ independent of volume and N at $\lambda_{\text {lat }}=1$
Right: New 4^{4} results at $4 \leq \lambda_{\text {lat }} \leq 8$ show much larger fluctuations

Currently filling in more volumes and N
Extremely expensive analysis despite new parallel algorithm:

$$
\sim 40 \times 50 \text { hours per } 4^{4} \text { point; } \mathcal{O}\left(n^{3}\right) \text { scaling }
$$

Two puzzles posed by the sign problem

- With periodic temporal boundary conditions for the fermions we have an obvious sign problem, $\left\langle e^{i \alpha}\right\rangle_{p q}$ consistent with zero
- With anti-periodic BCs and all else the same $e^{i \alpha} \approx 1$, phase reweighting has negligible effect

Why such sensitivity to the BCs?

Also, other observables are nearly identical for these two ensembles

Backup: Public code for lattice $\mathcal{N}=4$ SYM

so that the full improved action becomes

$$
\begin{align*}
S_{\text {imp }}= & S_{\text {exact }}^{\prime}+S_{\text {closed }}+S_{\text {soft }}^{\prime} \tag{3.10}\\
S_{\text {exact }}^{\prime}= & \frac{N}{2 \lambda_{\text {lat }}} \sum_{n} \operatorname{Tr}\left[-\overline{\mathcal{F}}_{a b}(n) \mathcal{F}_{a b}(n)-\chi_{a b}(n) \mathcal{D}_{[a}^{(+)} \psi_{b]}(n)-\eta(n) \overline{\mathcal{D}}_{a}^{(-)} \psi_{a}(n)\right. \\
& \left.\quad+\frac{1}{2}\left(\overline{\mathcal{D}}_{a}^{(-)} \mathcal{U}_{a}(n)+G \sum_{a \neq b}\left(\operatorname{det} \mathcal{P}_{a b}(n)-1\right) \mathbb{I}_{N}\right)^{2}\right]-S_{\text {det }} \\
S_{\text {det }}= & \frac{N}{2 \lambda_{\text {lat }}} G \sum_{n} \operatorname{Tr}[\eta(n)] \sum_{a \neq b}\left[\operatorname{det} \mathcal{P}_{a b}(n)\right] \operatorname{Tr}\left[\mathcal{U}_{b}^{-1}(n) \psi_{b}(n)+\mathcal{U}_{a}^{-1}\left(n+\widehat{\mu}_{b}\right) \psi_{a}\left(n+\widehat{\mu}_{b}\right)\right] \\
S_{\text {closed }}= & -\frac{N}{8 \lambda_{\text {lat }}} \sum_{n} \operatorname{Tr}\left[\epsilon_{a b c d e} \chi_{\text {de }}\left(n+\widehat{\mu}_{a}+\widehat{\mu}_{b}+\widehat{\mu}_{c}\right) \overline{\mathcal{D}}_{c}^{(-)} \chi_{a b}(n)\right], \\
S_{\text {soft }}^{\prime}= & \frac{N}{2 \lambda_{\text {lat }}} \mu^{2} \sum_{n} \sum_{a}\left(\frac{1}{N} \operatorname{Tr}\left[\mathcal{U}_{a}(n) \overline{\mathcal{U}}_{a}(n)\right]-1\right)^{2}
\end{align*}
$$

The lattice action is obviously very complicated (For experts: The fermion operator involves $\gtrsim 100$ gathers)

To reduce barriers to entry our parallel code is publicly developed at github.com/daschaich/susy

Evolved from MILC lattice QCD code, presented in arXiv:1410.6971

Backup: Failure of Leibnitz rule in discrete space-time

Given that $\left\{Q_{\alpha}, \bar{Q}_{\dot{\alpha}}\right\}=2 \sigma_{\alpha \dot{\alpha}}^{\mu} P_{\mu}=2 i \sigma_{\alpha \dot{\alpha}}^{\mu} \partial_{\mu}$ is problematic, why not try $\left\{Q_{\alpha}, \bar{Q}_{\dot{\alpha}}\right\}=2 i \sigma_{\alpha \dot{\alpha}}^{\mu} \nabla_{\mu}$ for a discrete translation?

Here $\nabla_{\mu} \phi(x)=\frac{1}{a}[\phi(x+a \widehat{\mu})-\phi(x)]=\partial_{\mu} \phi(x)+\frac{a}{2} \partial_{\mu}^{2} \phi(x)+\mathcal{O}\left(a^{2}\right)$
Essential difference between ∂_{μ} and ∇_{μ} on the lattice, $a>0$

$$
\begin{aligned}
\nabla_{\mu}[\phi(x) \chi(x)] & =a^{-1}[\phi(x+a \widehat{\mu}) \chi(x+a \widehat{\mu})-\phi(x) \chi(x)] \\
& =\left[\nabla_{\mu} \phi(x)\right] \chi(x)+\phi(x) \nabla_{\mu} \chi(x)+a\left[\nabla_{\mu} \phi(x)\right] \nabla_{\mu} \chi(x)
\end{aligned}
$$

We only recover the Leibnitz rule $\partial_{\mu}(f g)=\left(\partial_{\mu} f\right) g+f \partial_{\mu} g$ when $a \rightarrow 0$ \Longrightarrow "Discrete supersymmetry" breaks down on the lattice
(Dondi \& Nicolai, "Lattice Supersymmetry", 1977)

Backup: Twisting \longleftrightarrow Kähler-Dirac fermions

The Kähler-Dirac representation is related to the spinor $Q_{\alpha}^{\mathrm{I}}, \bar{Q}_{\dot{\alpha}}^{\mathrm{I}}$ by

$$
\left(\begin{array}{cccc}
Q_{\alpha}^{1} & Q_{\alpha}^{2} & Q_{\alpha}^{3} & Q_{\alpha}^{4} \\
\bar{Q}_{\dot{\alpha}}^{1} & \bar{Q}_{\dot{\alpha}}^{2} & \bar{Q}_{\dot{\alpha}}^{3} & \bar{Q}_{\dot{\alpha}}^{4}
\end{array}\right)=\begin{gathered}
\mathcal{Q}+\mathcal{Q}_{\mu} \gamma_{\mu}+\mathcal{Q}_{\mu \nu} \gamma_{\mu} \gamma_{\nu}+\overline{\mathcal{Q}}_{\mu} \gamma_{\mu} \gamma_{5}+\overline{\mathcal{Q}}_{5} \\
\longrightarrow \mathcal{Q}+\mathcal{Q}_{a} \gamma_{a}+\mathcal{Q}_{a b} \gamma_{a} \gamma_{b} \\
\text { with } a, b=1, \cdots, 5
\end{gathered}
$$

The 4×4 matrix involves R symmetry transformations along each row and (euclidean) Lorentz transformations along each column
\Longrightarrow Kähler-Dirac components transform under "twisted rotation group"

$$
\begin{aligned}
\mathrm{SO}(4)_{t w} \equiv \operatorname{diag}\left[\mathrm{SO}(4)_{\mathrm{euc}} \otimes\right. & \left.\mathrm{SO}(4)_{R}\right] \\
& \uparrow_{\text {only }} \mathrm{SO}(4)_{R} \subset \mathrm{SO}(6)_{R}
\end{aligned}
$$

Backup: A_{4}^{*} lattice with five links in four dimensions

$A_{a}=\left(A_{\mu}, \phi\right)$ may remind you of dimensional reduction
On the lattice we want to treat all five \mathcal{U}_{a} symmetrically to obtain $S_{5} \longrightarrow \mathrm{SO}(4)_{t w}$ symmetry
-Start with hypercubic lattice in 5d momentum space
-Symmetric constraint $\sum_{a} \partial_{a}=0$ projects to 4d momentum space
—Result is A_{4} lattice
\longrightarrow dual A_{4}^{*} lattice in real space

Backup: Hypercubic representation of A_{4}^{*} lattice

 In the code it is very convenient to represent the A_{4}^{*} lattice as a hypercube with a backwards diagonal

Backup: More on flat directions

(1) Complex gauge field $\Longrightarrow \mathrm{U}(N)=\mathrm{SU}(N) \otimes \mathrm{U}(1)$ gauge invariance $\mathrm{U}(1)$ sector decouples only in continuum limit
(2) $\mathcal{Q} \mathcal{U}_{a}=\psi_{a} \Longrightarrow$ gauge links must be elements of algebra

Resulting flat directions required by supersymmetric construction but must be lifted to ensure $\mathcal{U}_{a}=\mathbb{I}_{N}+\mathcal{A}_{a}$ in continuum limit

We need to add two deformations to regulate flat directions
$\operatorname{SU}(N)$ scalar potential $\propto \mu^{2} \sum_{a}\left(\operatorname{Tr}\left[\mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right]-N\right)^{2}$
$\mathrm{U}(1)$ plaquette determinant $\sim G \sum_{a \neq b}\left(\operatorname{det} \mathcal{P}_{a b}-1\right)$
Scalar potential softly breaks \mathcal{Q} supersymmetry susy-violating operators vanish as $\mu^{2} \rightarrow 0$

Plaquette determinant can be made \mathcal{Q}-invariant [arXiv:1505.03135]

Backup: One problem with flat directions

Gauge fields \mathcal{U}_{a} can move far away from continuum form $\mathbb{I}_{N}+\mathcal{A}_{a}$ if $N \mu^{2} /\left(2 \lambda_{\text {lat }}\right)$ becomes too small

Example for two-color $\left(\lambda_{\text {lat }}, \mu, \kappa\right)=(5,0.2,0.8)$ on $8^{3} \times 24$ volume
Left: Bosonic action is stable $\sim 18 \%$ off its supersymmetric value
Right: Polyakov loop wanders off to $\sim 10^{9}$

Backup: Another problem with $\mathrm{U}(1)$ flat directions

Flat directions in $\mathrm{U}(1)$ sector can induce transition to confined phase
This lattice artifact is not present in continuum $\mathcal{N}=4 \mathrm{SYM}$

Around the same $\lambda_{\text {lat }} \approx 2 \ldots$
Left: Polyakov loop falls towards zero
Center: Plaquette determinant falls towards zero
Right: Density of $\mathrm{U}(1)$ monopole world lines becomes non-zero

Backup: Soft susy breaking

Before 2015 we added the $\operatorname{det} \mathcal{P}$ constraint directly to the lattice action

$$
S_{\text {soft }}=\frac{N}{2 \lambda_{\text {lat }}} \mu^{2}\left(\frac{1}{N} \operatorname{Tr}\left[\mathcal{U}_{a} \overline{\mathcal{U}}_{\mathrm{a}}\right]-1\right)^{2}+\kappa\left|\operatorname{det} \mathcal{P}_{a b}-1\right|^{2}
$$

Both terms explicitly break \mathcal{Q} but det $\mathcal{P}_{a b}$ effects dominate
Left: The breaking is soft - guaranteed to vanish as $\mu, \kappa \longrightarrow 0$
Right: Soft \mathcal{Q} breaking is also suppressed $\propto 1 / N^{2}$

Backup: More on supersymmetric constraints

arXiv:1505.03135 introduces method to impose \mathcal{Q}-invariant constraints
Basic idea: Modify aux. field equations of motion \longrightarrow moduli space

$$
d(n)=\overline{\mathcal{D}}_{a}^{(-)} \mathcal{U}_{a}(n) \longrightarrow \overline{\mathcal{D}}_{a}^{(-)} \mathcal{U}_{a}(n)+G \mathcal{O}(n) \mathbb{I}_{N}
$$

Applied to plaquette determinant, $\mathcal{O}(n)=\sum_{a \neq b}\left[\operatorname{det} \mathcal{P}_{a b}(n)-1\right]$, produces much smaller violations of \mathcal{Q} Ward identity $\left\langle s_{B}\right\rangle=9 N^{2} / 2$

Backup: Code performance-weak and strong scaling

These results from arXiv:1410.6971 use an old ("unimproved") action
Left: Strong scaling for $U(2)$ and $U(3) 16^{3} \times 32$ RHMC
Right: Weak scaling for $\mathcal{O}\left(n^{3}\right)$ pfaffian calculation (fixed local volume)

$$
n \equiv 16 N^{2} L^{3} N_{T} \text { is number of fermion degrees of freedom }
$$

Both plots on log-log axes with power-law fits

Backup: Numerical costs for $N=2,3$ and 4 colors

Red: Find RHMC cost scaling $\sim N^{5}$ (recall adjoint fermion d.o.f. $\propto N^{2}$)
Blue: Pfaffian cost scaling consistent with expected N^{6}
Additional factor of $\sim 2 \times$ from new improved action, but same scaling

Backup: Restoration of \mathcal{Q}_{a} and $\mathcal{Q}_{a b}$ supersymmetries

Results from arXiv:1411.0166 to be revisited with the new action
Restoration of the other $15 \mathcal{Q}_{a}$ and $\mathcal{Q}_{a b}$ in the continuum limit follows from restoration of R symmetry (motivation for A_{4}^{*} lattice)

Modified Wilson loops test R symmetries at non-zero lattice spacing

Backup: $\mathcal{N}=4$ static potential from Wilson loops

Extract static potential $V(r)$ from $r \times T$ Wilson loops

$$
W(r, T) \propto e^{-V(r) T} \quad V(r)=A-C / r+\sigma r
$$

Coulomb gauge trick from lattice QCD reduces A_{4}^{*} lattice complications

Backup: Perturbation theory for Coulomb coefficient

For range of couplings currently being studied
(continuum) perturbation theory for $C(\lambda)$ is well behaved

Backup: More tests of the $U(2)$ static potential

Left: Projecting Wilson loops from $\mathrm{U}(2) \longrightarrow \mathrm{SU}(2)$
\Longrightarrow factor of $\frac{N^{2}-1}{N^{2}}=3 / 4$
Right: Unitarizing links removes scalars \Longrightarrow factor of $1 / 2$

Some results slightly above expected factors, may be related to non-zero auxiliary couplings μ and κ / G

Backup: More tests of the $U(3)$ static potential

Left: Projecting Wilson loops from $\mathrm{U}(3) \longrightarrow \mathrm{SU}(3)$
\Longrightarrow factor of $\frac{N^{2}-1}{N^{2}}=8 / 9$
Right: Unitarizing links removes scalars \Longrightarrow factor of $1 / 2$

Some results slightly above expected factors, may be related to non-zero auxiliary couplings μ and κ / G

Backup: Smearing for Konishi analyses

-As in glueball analyses, operator basis enlarged through smearing
—Use APE-like smearing $(1-\alpha)-+\frac{\alpha}{8} \sum \sqcap$,
with staples built from unitary parts of links but no final unitarization (unitarized smearing - e.g. stout - doesn't affect Konishi)
-Average plaquette is stable upon smearing (right) while minimum plaquette steadily increases (left)

Backup: Scaling dimensions from Monte Carlo RG

Write system as (infinite) sum of operators \mathcal{O}_{i} with couplings c_{i}
Couplings c_{i} flow under RG blocking transformation R_{b} n-times-blocked system is $H^{(n)}=R_{b} H^{(n-1)}=\sum_{i} c_{i}^{(n)} \mathcal{O}_{i}^{(n)}$

Consider linear expansion around fixed point H^{\star} with couplings c_{i}^{\star}

$$
c_{i}^{(n)}-c_{i}^{\star}=\left.\sum_{j} \frac{\partial c_{i}^{(n)}}{\partial c_{j}^{(n-1)}}\right|_{H^{\star}}\left(c_{j}^{(n-1)}-c_{j}^{\star}\right) \equiv \sum_{j} T_{i j}^{\star}\left(c_{j}^{(n-1)}-c_{j}^{\star}\right)
$$

$T_{i j}^{\star}$ is the stability matrix

Eigenvalues of $T_{i j}^{\star} \longrightarrow$ scaling dimensions of corresponding operators

