$\mathcal{N}=4$ super Yang–Mills on a space-time lattice

David Schaich (Syracuse)

SUSY 2015, Lake Tahoe, 25 August

arXiv:1411.0166, arXiv:1505.03135, arXiv:1508.00884 & more to come with Simon Catterall, Poul Damgaard, Tom DeGrand and Joel Giedt

Context: Why lattice supersymmetry

Lattice discretization provides non-perturbative, gauge-invariant regularization of vectorlike gauge theories

Amenable to numerical analysis

 \longrightarrow complementary approach to study strongly coupled field theories

Proven success for QCD; many potential susy applications:

- Compute Wilson loops, spectrum, scaling dimensions, etc., complementing perturbation theory, holography, bootstrap, ...
- Further direct checks of conjectured dualities
- Predict low-energy constants from dynamical susy breaking
- Validate or refine AdS/CFT-based modelling (e.g., QCD phase diagram, condensed matter systems)

Context: Why lattice supersymmetry

Lattice discretization provides non-perturbative, gauge-invariant regularization of vectorlike gauge theories

Amenable to numerical analysis

 \longrightarrow complementary approach to study strongly coupled field theories

Proven success for QCD; many potential susy applications:

- Compute Wilson loops, spectrum, scaling dimensions, etc., complementing perturbation theory, holography, bootstrap, ...
- Further direct checks of conjectured dualities
- Predict low-energy constants from dynamical susy breaking
- Validate or refine AdS/CFT-based modelling (e.g., QCD phase diagram, condensed matter systems)

Many ideas probably infeasible... Relatively few have been explored

Context: Why not lattice supersymmetry

Problem: $\left\{ Q_{\alpha}^{\mathrm{I}}, \overline{Q}_{\dot{\alpha}}^{\mathrm{J}} \right\} = 2\delta^{\mathrm{IJ}}\sigma_{\alpha\dot{\alpha}}^{\mu}P_{\mu}$

but infinitesimal translations don't exist in discrete space-time

 $\begin{array}{l} \text{Broken algebra} \Longrightarrow \text{ relevant susy-violating operators} \\ \text{(typically many, especially with scalar fields)} \end{array}$

Fine-tuning their couplings to restore supersymmetry is generally not practical in numerical lattice calculations

Solution: Preserve (some subset of) the susy algebra on the lattice Possible for 4d $\mathcal{N} = 4$ SYM, and lower-dim. systems

Same lattice formulation obtained from orbifolding / deconstruction and from "topological" twisting — cf. arXiv:0903.4881 for review

Exact susy on the lattice

Intuitive picture of Geometric-Langlands twist for $\mathcal{N}=4$ SYM

$$\begin{pmatrix} Q_{\alpha}^{1} & Q_{\alpha}^{2} & Q_{\alpha}^{3} & Q_{\alpha}^{4} \\ \overline{Q}_{\dot{\alpha}}^{1} & \overline{Q}_{\dot{\alpha}}^{2} & \overline{Q}_{\dot{\alpha}}^{3} & \overline{Q}_{\dot{\alpha}}^{4} \end{pmatrix} = \mathcal{Q} + \mathcal{Q}_{\mu}\gamma_{\mu} + \mathcal{Q}_{\mu\nu}\gamma_{\mu}\gamma_{\nu} + \overline{\mathcal{Q}}_{\mu}\gamma_{\mu}\gamma_{5} + \overline{\mathcal{Q}}\gamma_{5} \\ \longrightarrow \mathcal{Q} + \mathcal{Q}_{a}\gamma_{a} + \mathcal{Q}_{ab}\gamma_{a}\gamma_{b} \\ \text{with } a, b = 1, \cdots, 5 \end{cases}$$

 \mathcal{Q} 's transform with integer spin under "twisted rotation group"

$$\mathrm{SO(4)}_{tw} \equiv \mathrm{diag} \Big[\mathrm{SO(4)}_{\mathrm{euc}} \otimes \mathrm{SO(4)}_R \Big] \qquad \qquad \mathrm{SO(4)}_R \subset \mathrm{SO(6)}_R$$

This change of variables gives a susy subalgebra $\{Q, Q\} = 2Q^2 = 0$ This subalgebra can be exactly preserved on the lattice

David Schaich (Syracuse)

Twisted $\mathcal{N} = 4$ SYM fields and \mathcal{Q}

Everything transforms with integer spin under $SO(4)_{tw}$ — no spinors

$$egin{aligned} Q^{\mathrm{I}}_{lpha} & ext{ and } \overline{Q}^{\mathrm{I}}_{\dot{lpha}} & \longrightarrow \mathcal{Q}, \ \mathcal{Q}_{a} \ ext{and } \mathcal{Q}_{ab} \ \Psi^{\mathrm{I}} & ext{and } \overline{\Psi}^{\mathrm{I}} & \longrightarrow \eta, \ \psi_{a} \ ext{and } \chi_{ab} \ A_{\mu} & ext{and } \Phi^{\mathrm{IJ}} & \longrightarrow \mathcal{A}_{a} = (A_{\mu}, \phi) + i(B_{\mu}, \overline{\phi}) \ ext{and } \overline{\mathcal{A}}_{a} \end{aligned}$$

The twisted-scalar supersymmetry Q acts as

1 \mathcal{Q} directly interchanges bosonic \longleftrightarrow fermionic d.o.f.

2 The susy subalgebra $Q^2 \cdot = 0$ is manifest

Lattice $\mathcal{N} = 4$ SYM

The lattice theory is nearly a direct transcription,

despite breaking the 15 \mathcal{Q}_a and \mathcal{Q}_{ab}

- Covariant derivatives —> finite difference operators
- Complexified gauge fields $\mathcal{A}_a \longrightarrow$ gauge links \mathcal{U}_a

$$\begin{array}{l} \mathcal{Q} \ \mathcal{A}_{a} \longrightarrow \mathcal{Q} \ \mathcal{U}_{a} = \psi_{a} & \mathcal{Q} \ \psi_{a} = 0 \\ \mathcal{Q} \ \chi_{ab} = -\overline{\mathcal{F}}_{ab} & \mathcal{Q} \ \overline{\mathcal{A}}_{a} \longrightarrow \mathcal{Q} \ \overline{\mathcal{U}}_{a} = 0 \\ \mathcal{Q} \ \eta = d & \mathcal{Q} \ d = 0 \end{array}$$

(Complexification \implies U(N) = SU(N) \otimes U(1) gauge invariance)

• Supersymmetric lattice action (QS = 0) follows from $Q^2 \cdot = 0$ and Bianchi identity

$$\boldsymbol{S} = \frac{\boldsymbol{N}}{2\lambda_{\text{lat}}} \mathcal{Q}\left(\chi_{ab} \mathcal{F}_{ab} + \eta \overline{\mathcal{D}}_{a} \mathcal{U}_{a} - \frac{1}{2} \eta \boldsymbol{d}\right) - \frac{\boldsymbol{N}}{8\lambda_{\text{lat}}} \epsilon_{abcde} \ \chi_{ab} \overline{\mathcal{D}}_{c} \ \chi_{de}$$

Five links in four dimensions $\longrightarrow A_4^*$ lattice

—Can picture A^{*}₄ lattice as 4d analog of 2d triangular lattice

-Basis vectors are non-orthogonal and linearly dependent

-Preserves S₅ point group symmetry

 S_5 irreps precisely match onto irreps of twisted SO(4)_{tw}

$$5 = 4 \oplus 1: \quad \psi_a \longrightarrow \psi_\mu, \quad \overline{\eta}$$
$$10 = 6 \oplus 4: \quad \chi_{ab} \longrightarrow \chi_{\mu\nu}, \quad \overline{\psi}_\mu$$

 $S_5 \longrightarrow SO(4)_{tw}$ in continuum limit restores the rest of Q_a and Q_{ab}

Twisted $\mathcal{N} = 4$ SYM on the A_4^* lattice

High degree of exact symmetry: gauge invariance + Q + S_5

Several important analytic consequences:

- β function vanishes at one loop in lattice perturbation theory
- Real-space RG blocking transformations preserve ${\cal Q}$ and ${\it S}_5$
- Only one log. tuning to recover Q_a and Q_{ab} in the continuum

Not quite suitable for numerical calculations

Exact zero modes and flat directions must be regulated,

especially important in U(1) sector

Stabilized lattice action

[arXiv:1505.03135]

$$S = \frac{N}{2\lambda_{\text{lat}}} \mathcal{Q} \left(\chi_{ab} \mathcal{F}_{ab} + \bigcup_{\mathcal{P}} -\frac{1}{2} \eta d \right) - \frac{N}{8\lambda_{\text{lat}}} \epsilon_{abcde} \chi_{ab} \overline{\mathcal{D}}_c \chi_{de} + \mu^2 V$$
$$\eta \left(\overline{\mathcal{D}}_a \mathcal{U}_a + G \sum_{\mathcal{P}} \left[\det \mathcal{P} - 1 \right] \mathbb{I}_N \right)$$

-Scalar potential $V = \frac{1}{2N\lambda_{\text{lat}}} \left(\text{Tr} \left[\mathcal{U}_a \overline{\mathcal{U}}_a \right] - N \right)^2$ lifts SU(N) flat directions

—Constraint on plaquette det. lifts U(1) zero mode & flat directions Crucial that det \mathcal{P} deformation preserves \mathcal{Q}

Physics result: Static potential is Coulombic at all λ

Extract static potential V(r) from rectangular $(r \times T)$ Wilson loops $W(r, T) \propto e^{-V(r) T}$

Fits to confining form always produce vanishing string tension $\sigma = 0$

David Schaich (Syracuse)

Coupling dependence of Coulomb coefficient

Weak-coupling perturbation theory predicts $C(\lambda) = \lambda/(4\pi) + O(\lambda^2)$

AdS/CFT predicts $C(\lambda) \propto \sqrt{\lambda}$ for $N \to \infty$, $\lambda \to \infty$, $\lambda \ll N$

N = 2 results agree with perturbation theory for $\lambda \lesssim 2$

N = 3 results bend down for $\lambda \gtrsim 1$ — approaching AdS/CFT?

David Schaich (Syracuse)

Physics result: Konishi operator scaling dimension

The Konishi operator is the simplest conformal primary operator

$$\mathcal{O}_{\mathcal{K}} = \sum_{\mathrm{I}} \mathrm{Tr} \left[\Phi^{\mathrm{I}} \Phi^{\mathrm{I}} \right] \qquad \qquad \mathcal{C}_{\mathcal{K}}(r) \equiv \mathcal{O}_{\mathcal{K}}(x+r) \mathcal{O}_{\mathcal{K}}(x) \propto r^{-2\Delta_{\mathcal{K}}}$$

There are many predictions for its scaling dim. $\Delta_{\mathcal{K}}(\lambda) = 2 + \gamma_{\mathcal{K}}(\lambda)$

- From weak-coupling perturbation theory, related to strong coupling by $\frac{4\pi N}{\lambda} \longleftrightarrow \frac{\lambda}{4\pi N}$ S duality
- From holography for $N \to \infty$ and $\lambda \to \infty$ but $\lambda \ll N$
- Upper bounds from the conformal bootstrap program

Only lattice gauge theory can access nonperturbative λ at moderate N

Konishi operator on the lattice

Extract scalar fields from polar decomposition of complexified links

$$\mathcal{U}_{a} \simeq \mathcal{U}_{a} (\mathbb{I}_{N} + \varphi_{a}) \qquad \qquad \widehat{\mathcal{O}}_{K} = \sum_{a} \operatorname{Tr} [\varphi_{a} \varphi_{a}] \qquad \qquad \overline{\mathcal{O}}_{K} = \widehat{\mathcal{O}}_{K} - \left\langle \widehat{\mathcal{O}}_{K} \right\rangle$$

$$\overline{\mathcal{C}}_{\mathcal{K}}(r) = \overline{\mathcal{O}}_{\mathcal{K}}(x+r)\overline{\mathcal{O}}_{\mathcal{K}}(x) \propto r^{-2\Delta_{\mathcal{K}}}$$

Obvious sensitivity to volume as desired for conformal system *c*

Applicable lattice techniques: —Finite-size scaling (FSS) —Monte Carlo RG (MCRG)

Promising preliminary results for Δ_K from FSS and MCRG analyses...

David Schaich (Syracuse)

Konishi scaling dimension from Monte Carlo RG

Eigenvalues of MCRG stability matrix \longrightarrow scaling dimensions

Uncertainties from weighted histogram of results for...

- * 1 & 2 RG blocking steps
- ★ 1−5 operators in stability matrix

* Blocked volumes 3⁴ through 8⁴

Recapitulation and outlook

Rapid recent progress in lattice supersymmetry

- Lattice promises non-perturbative insights from first principles
- $\bullet\,$ Lattice $\mathcal{N}=4$ SYM is practical thanks to exact \mathcal{Q} susy
- Public code to reduce barriers to entry

Selected results from ongoing calculations

- Static potential is Coulombic at all couplings,
 C(λ) confronted with perturbation theory and AdS/CFT
- Promising initial Konishi anomalous dimension at weak coupling

Many more directions are being — or can be — pursued

- Understanding the (absence of a) sign problem
- Systems with less supersymmetry, in lower dimensions, including matter fields, exhibiting spontaneous susy breaking, ...

Thank you!

Thank you!

Collaborators

Simon Catterall, Poul Damgaard, Tom DeGrand and Joel Giedt

Funding and computing resources

Supplement: Potential sign problem

In lattice gauge theory we compute operator expectation values

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int [d\mathcal{U}] [d\overline{\mathcal{U}}] \mathcal{O} e^{-\mathcal{S}_{\mathcal{B}}[\mathcal{U},\overline{\mathcal{U}}]} \text{ pf } \mathcal{D}[\mathcal{U},\overline{\mathcal{U}}]$$

pf $\mathcal{D} = |\text{pf } \mathcal{D}| e^{i\alpha}$ can be complex for lattice $\mathcal{N} = 4$ SYM \longrightarrow Complicates interpretation of $[e^{-S_B} \text{ pf } \mathcal{D}]$ as Boltzmann weight

Instead compute phase-quenched (pq) observables and reweight:

$$\left\langle \mathcal{O}e^{i\alpha}\right\rangle_{pq} = \frac{1}{\mathcal{Z}_{pq}} \int [d\mathcal{U}][d\overline{\mathcal{U}}] \mathcal{O}e^{i\alpha} e^{-\mathcal{S}_{\mathcal{B}}} \left| \text{pf } \mathcal{D} \right| \implies \left\langle \mathcal{O} \right\rangle = \frac{\left\langle \mathcal{O}e^{i\alpha}\right\rangle_{pq}}{\left\langle e^{i\alpha}\right\rangle_{pq}}$$

Sign problem: This breaks down if $\langle e^{i\alpha} \rangle_{pq}$ is consistent with zero

Pfaffian phase dependence on volume and coupling

Left: $1 - \langle \cos(\alpha) \rangle \ll 1$ independent of volume and *N* at $\lambda_{\text{lat}} = 1$

Right: New 4⁴ results at $4 \le \lambda_{\text{lat}} \le 8$ show much larger fluctuations

Currently filling in more volumes and N

Extremely expensive analysis despite new parallel algorithm: $\sim 40 \times 50$ hours per 4⁴ point; $O(n^3)$ scaling

Two puzzles posed by the sign problem

- With periodic temporal boundary conditions for the fermions we have an obvious sign problem, $\langle e^{i\alpha} \rangle_{pq}$ consistent with zero
- With anti-periodic BCs and all else the same $e^{i\alpha} \approx 1$, phase reweighting has negligible effect

Why such sensitivity to the BCs?

Also, other observables are nearly identical for these two ensembles

Why doesn't the sign problem have observable effects?

Backup: Public code for lattice $\mathcal{N} = 4$ SYM

so that the full improved action becomes

$$\begin{split} S_{\text{imp}} &= S'_{\text{exact}} + S_{\text{closed}} + S'_{\text{soft}} \end{split} \tag{3.10} \\ S'_{\text{exact}} &= \frac{N}{2\lambda_{\text{lat}}} \sum_{n} \text{Tr} \left[-\overline{\mathcal{F}}_{ab}(n) \mathcal{F}_{ab}(n) - \chi_{ab}(n) \mathcal{D}_{[a}^{(+)} \psi_{b]}(n) - \eta(n) \overline{\mathcal{D}}_{a}^{(-)} \psi_{a}(n) \right. \\ &+ \frac{1}{2} \left(\overline{\mathcal{D}}_{a}^{(-)} \mathcal{U}_{a}(n) + G \sum_{a \neq b} (\det \mathcal{P}_{ab}(n) - 1) \mathbb{I}_{N} \right)^{2} \right] - S_{\text{det}} \\ S_{\text{det}} &= \frac{N}{2\lambda_{\text{lat}}} G \sum_{n} \text{Tr} \left[\eta(n) \right] \sum_{a \neq b} [\det \mathcal{P}_{ab}(n)] \text{Tr} \left[\mathcal{U}_{b}^{-1}(n) \psi_{b}(n) + \mathcal{U}_{a}^{-1}(n + \widehat{\mu}_{b}) \psi_{a}(n + \widehat{\mu}_{b}) \right] \\ S_{\text{closed}} &= -\frac{N}{8\lambda_{\text{lat}}} \sum_{n} \text{Tr} \left[\epsilon_{abcdc} \chi_{dc}(n + \widehat{\mu}_{a} + \widehat{\mu}_{b} + \widehat{\mu}_{c}) \overline{\mathcal{D}}_{c}^{(-)} \chi_{ab}(n) \right], \\ S'_{\text{soff}} &= \frac{N}{2\lambda_{\text{lat}}} \mu^{2} \sum_{n} \sum_{a} \left(\frac{1}{N} \text{Tr} \left[\mathcal{U}_{a}(n) \overline{\mathcal{U}}_{a}(n) \right] - 1 \right)^{2} \end{split}$$

The lattice action is obviously very complicated (For experts: The fermion operator involves $\gtrsim 100$ gathers)

To reduce barriers to entry our parallel code is publicly developed at github.com/daschaich/susy

Evolved from MILC lattice QCD code, presented in arXiv:1410.6971

David Schaich (Syracuse)

Backup: Failure of Leibnitz rule in discrete space-time

Given that
$$\left\{ Q_{\alpha}, \overline{Q}_{\dot{\alpha}} \right\} = 2\sigma^{\mu}_{\alpha\dot{\alpha}}P_{\mu} = 2i\sigma^{\mu}_{\alpha\dot{\alpha}}\partial_{\mu}$$
 is problematic,
why not try $\left\{ Q_{\alpha}, \overline{Q}_{\dot{\alpha}} \right\} = 2i\sigma^{\mu}_{\alpha\dot{\alpha}}\nabla_{\mu}$ for a discrete translation?

Here $\nabla_{\mu}\phi(\mathbf{x}) = \frac{1}{a} \left[\phi(\mathbf{x} + a\hat{\mu}) - \phi(\mathbf{x})\right] = \partial_{\mu}\phi(\mathbf{x}) + \frac{a}{2}\partial_{\mu}^{2}\phi(\mathbf{x}) + \mathcal{O}(a^{2})$

Essential difference between ∂_{μ} and ∇_{μ} on the lattice, a > 0 $\nabla_{\mu} [\phi(x)\chi(x)] = a^{-1} [\phi(x + a\hat{\mu})\chi(x + a\hat{\mu}) - \phi(x)\chi(x)]$ $= [\nabla_{\mu}\phi(x)]\chi(x) + \phi(x)\nabla_{\mu}\chi(x) + a[\nabla_{\mu}\phi(x)]\nabla_{\mu}\chi(x)$

We only recover the Leibnitz rule $\partial_{\mu}(fg) = (\partial_{\mu}f)g + f\partial_{\mu}g$ when $a \to 0$ \implies "Discrete supersymmetry" breaks down on the lattice (Dondi & Nicolai, "Lattice Supersymmetry", 1977)

The Kähler–Dirac representation is related to the spinor $Q_{\alpha}^{I}, \overline{Q}_{\dot{\alpha}}^{I}$ by

$$\begin{pmatrix} Q_{\alpha}^{1} & Q_{\alpha}^{2} & Q_{\alpha}^{3} & Q_{\alpha}^{4} \\ \overline{Q}_{\dot{\alpha}}^{1} & \overline{Q}_{\dot{\alpha}}^{2} & \overline{Q}_{\dot{\alpha}}^{3} & \overline{Q}_{\dot{\alpha}}^{4} \end{pmatrix} = \mathcal{Q} + \mathcal{Q}_{\mu}\gamma_{\mu} + \mathcal{Q}_{\mu\nu}\gamma_{\mu}\gamma_{\nu} + \overline{\mathcal{Q}}_{\mu}\gamma_{\mu}\gamma_{5} + \overline{\mathcal{Q}}\gamma_{5} \\ \longrightarrow \mathcal{Q} + \mathcal{Q}_{a}\gamma_{a} + \mathcal{Q}_{ab}\gamma_{a}\gamma_{b} \\ \text{with } a, b = 1, \cdots, 5 \end{cases}$$

The 4 \times 4 matrix involves R symmetry transformations along each row and (euclidean) Lorentz transformations along each column

⇒ Kähler–Dirac components transform under "twisted rotation group"

$$SO(4)_{tw} \equiv diag \left[SO(4)_{euc} \otimes SO(4)_R \right]$$

$$\uparrow_{only \ SO(4)_R \subset SO(6)_R}$$

Backup: A_4^* lattice with five links in four dimensions

 $A_a = (A_\mu, \phi)$ may remind you of dimensional reduction

On the lattice we want to treat all five U_a symmetrically to obtain $S_5 \longrightarrow SO(4)_{tw}$ symmetry

Backup: Hypercubic representation of A_4^* lattice

In the code it is very convenient to represent the A_4^* lattice as a hypercube with a backwards diagonal

Backup: More on flat directions

Complex gauge field ⇒ U(N) = SU(N) ⊗ U(1) gauge invariance U(1) sector decouples only in continuum limit

Q U_a = ψ_a ⇒ gauge links must be elements of algebra
 Resulting flat directions required by supersymmetric construction but must be lifted to ensure U_a = I_N + A_a in continuum limit

We need to add two deformations to regulate flat directions SU(N) scalar potential $\propto \mu^2 \sum_a (\text{Tr} [\mathcal{U}_a \overline{\mathcal{U}}_a] - N)^2$ U(1) plaquette determinant $\sim G \sum_{a \neq b} (\det \mathcal{P}_{ab} - 1)$

Scalar potential **softly** breaks Q supersymmetry

`susy-violating operators vanish as $\mu^2
ightarrow 0$

Plaquette determinant can be made *Q*-invariant [arXiv:1505.03135]

David Schaich (Syracuse)

Backup: One problem with flat directions

Gauge fields U_a can move far away from continuum form $\mathbb{I}_N + A_a$ if $N\mu^2/(2\lambda_{\text{lat}})$ becomes too small

Example for two-color $(\lambda_{\text{lat}}, \mu, \kappa) = (5, 0.2, 0.8)$ on $8^3 \times 24$ volume

Left: Bosonic action is stable $\sim 18\%$ off its supersymmetric value

Right: Polyakov loop wanders off to $\sim 10^9$

David Schaich (Syracuse)

Backup: Another problem with U(1) flat directions

Flat directions in U(1) sector can induce transition to confined phase This lattice artifact is not present in continuum $\mathcal{N} = 4$ SYM

Around the same $\lambda_{lat} \approx 2...$

Left: Polyakov loop falls towards zero

Center: Plaquette determinant falls towards zero

Right: Density of U(1) monopole world lines becomes non-zero

David Schaich (Syracuse)

Backup: Soft susy breaking

Before 2015 we added the det \mathcal{P} constraint directly to the lattice action

$$S_{soft} = \frac{N}{2\lambda_{\text{lat}}} \mu^2 \left(\frac{1}{N} \text{Tr} \left[\mathcal{U}_a \overline{\mathcal{U}}_a\right] - 1\right)^2 + \kappa \left|\det \mathcal{P}_{ab} - 1\right|^2$$

Both terms explicitly break Q but det \mathcal{P}_{ab} effects dominate

Left: The breaking is **soft** — guaranteed to vanish as $\mu, \kappa \longrightarrow 0$

Right: Soft Q breaking is also suppressed $\propto 1/N^2$

David Schaich (Svracuse)

Backup: More on supersymmetric constraints

arXiv:1505.03135 introduces method to impose Q-invariant constraints

Basic idea: Modify aux. field equations of motion \longrightarrow moduli space

$$d(n) = \overline{\mathcal{D}}_a^{(-)} \mathcal{U}_a(n) \longrightarrow \overline{\mathcal{D}}_a^{(-)} \mathcal{U}_a(n) + G\mathcal{O}(n) \mathbb{I}_N$$

Applied to plaquette determinant, $O(n) = \sum_{a \neq b} [\det P_{ab}(n) - 1]$, produces much smaller violations of Q Ward identity $\langle s_B \rangle = 9N^2/2$

Backup: Code performance—weak and strong scaling These results from arXiv:1410.6971 use an old ("unimproved") action

Left: Strong scaling for U(2) and U(3) $16^3 \times 32$ RHMC

Right: Weak scaling for $O(n^3)$ pfaffian calculation (fixed local volume) $n \equiv 16N^2L^3N_T$ is number of fermion degrees of freedom

Both plots on log-log axes with power-law fits

David Schaich (Syracuse)

Backup: Numerical costs for N = 2, 3 and 4 colors

Red: Find RHMC cost scaling $\sim N^5$ (recall adjoint fermion d.o.f. $\propto N^2$)

Blue: Pfaffian cost scaling consistent with expected N⁶

Additional factor of $\sim 2 \times$ from new improved action, but same scaling

David Schaich (Syracuse)

Backup: Restoration of Q_a and Q_{ab} supersymmetries

Results from arXiv:1411.0166 to be revisited with the new action

Restoration of the other 15 Q_a and Q_{ab} in the continuum limit follows from restoration of R symmetry (motivation for A_4^* lattice)

Modified Wilson loops test R symmetries at non-zero lattice spacing

David Schaich (Syracuse)

Backup: $\mathcal{N} = 4$ static potential from Wilson loops

Extract static potential V(r) from $r \times T$ Wilson loops $W(r, T) \propto e^{-V(r) T}$ $V(r) = A - C/r + \sigma r$

Coulomb gauge trick from lattice QCD reduces A_{4}^{*} lattice complications

Backup: Perturbation theory for Coulomb coefficient

For range of couplings currently being studied

(continuum) perturbation theory for $C(\lambda)$ is well behaved

David Schaich (Syracuse)

Backup: More tests of the U(2) static potential

Left: Projecting Wilson loops from U(2)
$$\longrightarrow$$
 SU(2)
 \implies factor of $\frac{N^2-1}{N^2} = 3/4$

Right: Unitarizing links removes scalars \implies factor of 1/2

Some results slightly above expected factors, may be related to non-zero auxiliary couplings μ and κ / G

David Schaich (Syracuse)

Backup: More tests of the U(3) static potential

Left: Projecting Wilson loops from U(3)
$$\longrightarrow$$
 SU(3)
 \implies factor of $\frac{N^2-1}{N^2} = 8/9$

Right: Unitarizing links removes scalars \implies factor of 1/2

Some results slightly above expected factors, may be related to non-zero auxiliary couplings μ and κ / G

David Schaich (Syracuse)

Lattice $\mathcal{N} = 4$ SYM

SUSY 2015, 25 August 19 / 19

Backup: Smearing for Konishi analyses

-As in glueball analyses, operator basis enlarged through smearing

—Use APE-like smearing $(1 - \alpha)$ — $+\frac{\alpha}{8} \sum \Box$,

with staples built from unitary parts of links but no final unitarization (unitarized smearing — e.g. stout — doesn't affect Konishi)

—Average plaquette is stable upon smearing (right) while minimum plaquette steadily increases (left)

Backup: Scaling dimensions from Monte Carlo RG

Write system as (infinite) sum of operators O_i with couplings c_i

Couplings c_i flow under RG blocking transformation R_b

n-times-blocked system is $H^{(n)} = R_b H^{(n-1)} = \sum_i c_i^{(n)} \mathcal{O}_i^{(n)}$

Consider linear expansion around fixed point H^* with couplings c_i^*

$$\left. oldsymbol{c}_{i}^{(n)}-oldsymbol{c}_{i}^{\star} = \sum_{j} \left. rac{\partial oldsymbol{c}_{i}^{(n)}}{\partial oldsymbol{c}_{j}^{(n-1)}}
ight|_{H^{\star}} \left(oldsymbol{c}_{j}^{(n-1)}-oldsymbol{c}_{j}^{\star}
ight) \equiv \sum_{j} T_{ij}^{\star} \left(oldsymbol{c}_{j}^{(n-1)}-oldsymbol{c}_{j}^{\star}
ight)$$

T_{ii}^{\star} is the stability matrix

Eigenvalues of $T_{ii}^{\star} \longrightarrow$ scaling dimensions of corresponding operators

David Schaich (Syracuse)