Searches for 3rd Generation Squarks at CMS

SUSY 2015 Lake Tahoe, CA August 24, 2015

Outline

- Naturalness and 3rd Generation SUSY
- Stop Pair Production Topologies
- 8 TeV Stop Search Results
- 1-lepton BDT and 0-lepton razor combination
- Monojet (stop to charm + LSP)
- New all-hadronic BDT stop search
- 13 TeV Outlook and Commissioning

Javier Duarte
Caltech

Naturalness and 3rd Gen. SUSY

- Due to the standard model Yukawa couplings, the lightest Higgs boson mass is
- corrected at 1 loop-level by contribution from stops
- corrected at 2 loop-level by contribution from gluinos
- Naturalness = all contributions are of the same order as the physical Higgs mass (no fine-tuning)
- "Acceptable" fine-tuning implies stops lighter than $\sim 700 \mathrm{GeV}$ gluinos lighter than ~1.5 TeV ${ }^{1}$
- Possible spectrum:

1. arXiv:1110.6926 [hep-ph]; see also arXiv:1407.6966 [hep-ph] Javier Duarte
Caltech

Stop Pair Production Topologies

SUS-13-011 EPJC 73 (2013) 2677* (one-lepton mva)

- Simplified models target specific experimental signatures ("bottom-up" approach)

SUS-13-004 PRD 91, 052018 (2015)* (inclusive razor)
SUS-13-023 (new! all-hadronic)
SUS-14-001 JHEP 06 (2015) 116* (multijet+dijet+monojet)
SUS-13-024 PLB 736371 (2014) (H/Z tagged)
stop pair production

Javier Duarte
Caltech
 electroweakinos*

cascade decay involving two light stops

4

including mixed branching ratios*

CMS

SUS-13-011
 EPJC 73 (2013) 2677

1-Lepton BDT

- After tight single lepton selection, optimize different multivariate boosted decision trees (BDTs) for different regions of phase space based on signal-sensitive observables
example inputs:

Javier Duarte Caltech

0-Lepton Razor

- Razor variables computed from "megajets" (forcing dijet topology)
- Events are sorted into "boxes" based on

$$
M_{R}=\sqrt{\left(\left|\vec{p}_{j 1}\right|+\left|\vec{p}_{j 2}\right|\right)^{2}-\left(p_{z}^{j 1}+p_{z}^{j 2}\right)^{2}}
$$ number of leptons, jets, and b-jets

$$
R \equiv \frac{M_{T}^{R}}{M_{R}} \quad M_{T}^{R} \equiv \sqrt{\frac{E_{T}^{\text {miss }}\left(p_{T}^{j 1}+p_{T}^{j 2}\right)-\vec{E}_{T}^{\text {miss. }} \cdot\left(\vec{p}_{T}^{j 1}+\vec{p}_{T}^{j 2}\right)}{2}}
$$

$\mathbf{M}_{\mathbf{R}}$ peaks at char. mass scale

Razor Backgrounds

$$
f_{\operatorname{Razor}}(x, y) \propto\left(b\left[\left(x-x_{0}\right)\left(y-y_{0}\right)\right]^{1 / n}-1\right) \operatorname{Exp}\left\{-b n\left[\left(x-x_{0}\right)\left(y-y_{0}\right)\right]^{1 / n}\right\}
$$

- $2 d$ analytic shape is fit in a backgroundenriched sideband and extrapolated
- Agreement is quantified between prediction and data as a two-sided p-value, expressed as a number of standard deviations for a gaussian

Javier Duarte
Caltech

0-Lepton + 1-Lepton Combination

- Combining 1-lepton BDT and 0-lepton razor yielded the strongest CMS limit on the stop mass
 Javier Duarte
Caltech

0-Lepton + 1-Lepton Combination

- Generic branching-ratio independent limit was also derived considering most conservative limit after scanning over branching ratios: $x=\mathrm{BR}\left(\tilde{\mathrm{t}} \rightarrow \mathrm{t} \tilde{\mathrm{X}}^{0}\right), 1-x=\mathrm{BR}\left(\widetilde{\mathrm{t}} \rightarrow \mathrm{b} \tilde{\mathrm{X}}^{ \pm}\right)$

Javier Duarte Caltech

Monojet Stop Search

- Monojet search covers compressed region, where stop to charm + LSP decay is favored

sus-13-023 All-hadronic BDT: Top Reconstruction

- Dedicated high efficiency top pair reconstruction

Javier Duarte
Caltech

sus-13-023 All-hadronic BDT: Top Reconstruction

- Dedicated high efficiency top pair reconstruction
- Input "fat jets"

Cambridge-Aachen
$\Delta R=1$

Javier Duarte
Caltech

sus-13-023 All-hadronic BDT: Top Reconstruction

- Dedicated high efficiency top pair reconstruction
- Input "fat jets" are split into up to 2 subjets to create "picky jets"

©Javier Duarte Caltech

sus-13-023 All-hadronic BDT: Top Reconstruction

- Dedicated high efficiency top pair reconstruction
- MVA-based top pair reconstruction: choose best pair of "top candidates"
- Input "fat jets" are split into up to 2 subjets to create "picky jets"
 Javier Duarte
Caltech

Cambridge-Aachen
$\Delta R=1 \quad \longrightarrow$ "picky jets"
"fat jets"

sus-13-023 All-hadronic BDT: Top Pair Kinematics

- Top pair kinematics are used to discriminate signal from background
tops from signal are collimated

tops from signal are not angularly correlated with MET

SUS-13-023
 All-hadronic BDT Results

- 4 BDTs (optimized for different stop mass) are trained with 24 input variables, including MET, "top candidate" MVA values, etc.
- MC mis-modeling is corrected using data-driven scale factors: lepton id., b-tagging, jet momentum, and MET

Javier Duarte
Caltech

Outlook for 13 TeV

- 5σ discovery reach in stop mass will reach 800 GeV in a conservative scenario
- Crucial region for testing naturalness and whether SUSY has a role in Electroweak symmetry breaking
- $\stackrel{\text { naturalness }}{ }$ prefers $m_{\text {stop }}$ lighter than 700 GeV
- $\stackrel{\mathrm{m}_{\mathrm{H}}=126 \mathrm{GeV} \text { prefers } \mathrm{m}_{\text {stop }}}{ }$ heavier than $300 \mathrm{GeV}^{1}$

1. arXiv:1110.6926 [hep-ph]; see also arXiv:1407.6966 [hep-ph]
 Javier Duarte

SUS-15-001

13 TeV Commissioning

- Good agreement in dilepton M_{R} distribution (DY and $t \bar{t}$ dominated) in early 13 TeV data
- Improving our understanding of QCD MET and R^{2} tails in 0 b-tag control sample

SUS-15-001

13 TeV Commissioning

- M_{R} and R^{2} sideband fit procedure has been commissioned in tṫ and W single lepton control regions

$t \bar{t}$ single lepton control region

sun?

- The CMS SUSY search program at 8 TeV has produced stringent limits on many "natural" SUSY scenarios
- Up to 775 GeV limit on stop mass (decay to tops)
- Compressed region (stop to charm + LSP) covered by monojet search
- Commissioning of triggers, kinematic variables, and methods underway with early 13 TeV data
- Stay tuned in 2015-2016: we will probe interesting regions in natural SUSY phase space at 5σ discovery level

Javier Duarte
Caltech

Backup

Caltech

All-hadronic BDT Results

systematics uncertainties and relative sizes

- Four different BDTs (optimized for different stop mass phase space) are trained with 24 input variables, including MET, mT(b-tag, MET), jet multiplicity, CORRAL top candidate MVA value, and others
- MC are corrected using data-driven scale factors for mis-modeling of lepton id efficiency, b-tagging efficiency, jet momentum, and MET

Systematics source	Magnitude (\%)
b-tagging	$5 \%-10 \%$
JES	$5 \%-20 \%$
JER	$<5 \%$
ISR	$1 \%-20 \%$
PDF	$1 \%-15 \%$
Luminosity	2.6%
CORRAL FastSim (T2tt)	$1 \%-20 \%$
CORRAL dependence on PS (T2tt)	5%
CORRAL reconstruction (T2tt)	5%

Search Region Name	$\mathrm{M}(\mathrm{t})[\mathrm{GeV}]$	$\mathrm{M}\left(\widetilde{\chi}_{1}^{0}\right)[\mathrm{GeV}]$	x	Cut	Signal efficiency	
1	T2tt_LM	300	25	-	0.79	8%
2	T2tt_MM	425	75	-	0.83	16%
3	T2tt_HM	550	25	-	0.92	25%
4	T2tt_VHM	675	250	-	0.95	19%

Best limit on stop mass 775 GeV

Javier Duarte Caltech

Monojet Stop to Charm LSP

- Monojet search covers compressed region, where stop to charm + LSP decay is favored

Monojet search	SM Pred.	Obs.
$p_{T_{1}}^{j_{1}}>250 \mathrm{GeV}$	35900 ± 1500	36600
$p_{T}^{j_{1}}>300 \mathrm{GeV}$	17400 ± 800	17600
$p_{T}^{j_{1}}>350 \mathrm{GeV}$	8060 ± 440	8120
$p_{T}^{j_{1}}>400 \mathrm{GeV}$	3910 ± 250	3900
$p_{T}^{j_{1}}>450 \mathrm{GeV}$	2100 ± 160	1900
$p_{T}^{j_{1}}>500 \mathrm{GeV}$	1100 ± 110	1000
$p_{T}^{j_{1}}>550 \mathrm{GeV}$	563 ± 71	565

Javier Duarte

SUS-13-011

EPJC 73 (2013) 2677

- Define a multivariate boosted decision tree (BDT) based
 on several signal sensitive observables, e.g. $E_{T}^{\text {miss }}, M_{T 2}^{W}$
- $M_{T 2}^{W}=$ minimum mother particle mass consistent with observed and assumed kinematic constraints
$M_{T 2}^{W}=\min \left\{m_{y}\right.$ consistent with: $\left.\left[\begin{array}{r}\vec{p}_{1}^{T}+\vec{p}_{2}^{T}=\vec{E}_{T}^{\text {miss }}, p_{1}^{2}=0,\left(p_{1}+p_{\ell}\right)^{2}=p_{2}^{2}=M_{W}^{2}, \\ \left(p_{1}+p_{\ell}+p_{b_{1}}\right)^{2}=\left(p_{2}+p_{b_{2}}\right)^{2}=m_{y}^{2}\end{array}\right]\right\}$

SUS-13-011

EPJC 73 (2013) 2677

1-Lepton BDT

- Separate BDTs optimized for different several regions of parameter space within four models

	$\tilde{\mathfrak{t}} \rightarrow \mathrm{t} \tilde{\chi}_{1}^{0}$		
		cut-based	
Selection	BDT	Low ΔM	High ΔM
$E_{\mathrm{T}}^{\text {miss }}(\mathrm{GeV})$	yes	$>150,200$,	$>150,200$,
$M_{\mathrm{T} 2}^{\mathrm{W}}(\mathrm{GeV})$		250,300	250,300
$\min \Delta \phi$	yes		>200
$H_{\mathrm{T}}^{\text {ratio }}$	yes	>0.8	>0.8
hadronic top χ^{2}	yes		
leading b-jet $p_{\mathrm{T}}(\mathrm{GeV})$	(on-shell top)	<5	<5
(off-shell top)			

©
Javier Duarte
Caltech

SUS-13-004
 PRD 91, 052018 (2015)

Razor Signal Injection

Javier Duarte

