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The model:

• extra U(1)X gauge symmetry (AµX),

• a complex scalar field S, whose vev generates a mass for the U(1)’s vector field,
S = (0,1,1, 1) under U(1)Y × SU(2)L × SU(3)c × U(1)X.

• SM fields neutral under U(1)X,

• in order to ensure stability of the new vector boson a Z2 symmetry is assumed to
forbid U(1)-kinetic mixing between U(1)X and U(1)Y . The extra gauge boson Aµ
and the scalar S field transform under Z2 as follows

AµX → −A
µ
X , S → S∗, where S = φeiσ, so φ→ φ, σ → −σ.
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The scalar potential

V = −µ2
H|H|2 + λH|H|4 − µ2

S|S|2 + λS|S|4 + κ|S|2|H|2.

The vector bosons masses:

MW =
1

2
gv, MZ =

1

2

√
g2 + g′2v and MZ′ = gxvx,

where

〈H〉 =

(
0
v√
2

)
and 〈S〉 =

vx√
2

Positivity of the potential implies

λH > 0, λS > 0, κ > −2
√
λHλS.

The minimization conditions for scalar fields

(2λHv
2 + κv2

x − 2µ2
H)v = 0 and (κv2 + 2λSv

2
x − 2µ2

S)vx = 0
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For κ2 < 4λHλS the global minima are

v2 =
4λSµ

2
H − 2κµ2

S

4λHλS − κ2
and v2

x =
4λHµ

2
S − 2κµ2

H

4λHλS − κ2

Both scalar fields can be expanded around corresponding vev’s as follows

S =
1√
2

(vx + φS + iσS) , H0 =
1√
2

(v + φH + iσH) where H =

(
H+

H0

)
.

The mass squared matrixM2 for the fluctuations (φH, φS) and their eigenvalues read

M2 =

(
2λHv

2 κvvx
κvvx 2λSv

2
x

)
M2
± = λHv

2 + λSv
2
x ±

√
λ2
Sv

4
x − 2λHλSv2v2

x + λ2
Hv

4 + κ2v2v4
x

M2
diag =

(
M2
h1

0

0 M2
h2

)
, R =

(
cosα − sinα
sinα cosα

)
,

(
h1

h2

)
= R−1

(
φH
φS

)
,
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where Mh1 = 125.7 GeV is the mass of the observed Higgs particle. Then we obtain

sin 2α =
sign(λSM − λH) 2M2

12√
(M2

11 −M2
22)2 + 4(M2

12)2
, cos 2α =

sign(λSM − λH)(M2
11 −M2

22)√
(M2

11 −M2
22)2 + 4(M2

12)2
.

Note that since vev of H is fixed at 246.22 GeV, with κ = 0 (no mass mixing) and
λH 6= λSM it is only φS which can have the observed Higgs mass of 125.7 GeV.
Even though the mass matrix is diagonal in this case, however in order to satisfy our
convention that Mh1 = 125.7 GeV a rotation by α = ±π/2 is required in such a case.

There are 5 real parameters in the potential: µH, µS, λH, λS and κ. Adopting the
minimization conditions µH, µS could be replaced by v and vx. The SM vev is fixed
at v = 246.22 GeV. Using the condition Mh1 = 125.7 GeV, v2

x could be eliminated in
terms of v2, λH, κ, λS, λSM = M2

h1
/(2v2):

v2
x = v2 4λSM(λH − λSM)

4λS(λH − λSM)− κ2

Eventually there are 4 independent parameters:

(λH, κ, λS, gx),

where gx is the U(1)X coupling constant.
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Figure 1: Contour plots for masses of the non-standard (h2) Higgs particle in the plane (λH, κ). In the bottom part of the plot

(λH < λSM = M2
h1
/(2v2) = 0.13) the heavier Higgs is the currently observed one, while in the upper part (λH > λSM ) the lighter state

is the observed one. White regions in the upper and lower parts are disallowed by the positivity conditions for v2
x and M2

h2
, respectively.

• Positivity of v2
x implies for λH > λSM that λH > κ2

4λS
+ λSM

• Positivity of M2
h2

implies for λH < λSM that λH > κ2

4λS
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Figure 2: Contour plots for the vacuum expectation value of the extra scalar vx ≡
√

2〈S〉 (left panel) and of the mixing angle α (right

panel) in the plane (λH, κ).
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Vacuum stability

V = −µ2
H|H|2 + λH|H|4 − µ2

S|S|2 + λS|S|4 + κ|S|2|H|2

2-loop running of parameters adopted

λH(Q) > 0, λS(Q) > 0, κ(Q) + 2
√
λH(Q)λS(Q) > 0
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Figure 3: Running of various parameters at 1- and 2-loop, in solid and dashed lines respectively. For this choice of parameters λH(Q) > 0

at 2-loop (right panel blue) but not at 1-loop. λS(Q) is always positive (right panel red), running of κ(Q) is very limited, however the third

positivity condition κ(Q) + 2
√
λH(Q)λS(Q) > 0 is violated at higher scales even at 2-loops (right panel green).
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The mass of the Higgs boson is known experimentally therefore within the SM the
initial condition for running of λH(Q) is fixed

λH(mt) = M2
h1
/(2v2) = λSM = 0.13

For VDM this is not necessarily the case:

M2
h1

= λHv
2 + λSv

2
x ±

√
λ2
Sv

4
x − 2λHλSv2v2

x + λ2
Hv

4 + κ2v2v4
x.

VDM:

• Larger initial values of λH such that λH(mt) > λSM are allowed delaying the
instability (by shifting up the scale at which λH(Q) < 0).

• Even if the initial λH is smaller than its SM value, λH(mt) < λSM , still there is a
chance to lift the instability scale if appropriate initial value of the portal coupling
κ(mt) is chosen.

β
(1)
λH

= β
SM (1)
λH

+ κ2
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Figure 4: The stability frontier for the H direction: these plots identify the renormalisation scale t∗ = Log10(Q∗) at which λH(Q∗) = 0

and the vacuum becomes unstable, as a function of (λ(mt), κ(mt)). The horizontal solid black line corresponds to λH(mt) = λSM ' 0.13.
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Figure 5: The “in between” stability frontier : these plots identify the scale t∗ = Log10(Q∗) at which the positivity condition

κ(Q) + 2
√
λH(Q)λS(Q) > 0 fails and the vacuum becomes unstable, as a function of (λ(mt), κ(mt)) for fixed choices of

(gx(mt), λS(mt)) specified above each panel. The horizontal solid black line corresponds to λH(mt) = λSM ' 0.13. The gray area is

excluded by the requirement that there is no Landau poles up to the Planck mass.
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Landau poles

Figure 6: Contour plots of λH(MPl) in the plane of (λ(mt), κ(mt)) for fixed gx(mt) and λS(mt) specified above each panel. The

horizontal solid black line corresponds to λH(mt) = λSM ' 0.13. The plots allow one to identify regions (white) in which the λH(Q)

Landau pole is below the Planck scale.
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Experimental constraints

• no invisible h1 decays: h1 → Z ′Z ′, h1 → h2h2,

• LEP constraints for e+e− → Zh2 satisfied,

• LHC constraints on

κV ≡
gh1V V

gSMh1V V

with 0.85 < κV < 1

• limits from electroweak precision data (S,T) satisfied at 95% CL

S =
16π cos2 θW

g2
δΠ′ZZ(0), T =

4π

e2

(
δΠWW (0)

M2
W

− δΠZZ(0)

M2
Z

)
,

• DM abundance (ΩDMh
2) remains within the 5σ limit (micrOMEGAs and explicite

calculation)
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Figure 7: Combined plots of allowed and disallowed parameter space in the plane (λH(mt), κ(mt)) for gx(mt) = g1(mt) and

λS(mt) = λSM (mt) = 0.13. The thin red line denotes the frontier above which a Landau pole appears below λH(MPl). The thin blue

line denotes the absolute stability frontier. Below the thin green line the positivity condition fails at some renormalisation scale (its wavy shape is a

numerical artifact). The green area denotes LEP exclusions on Higgs-like scalars. In the outer red area positivity fails at the low scale, while in the

orange area no physical solution of the vev vx exists. The blue area denotes an excess of the h1 Higgs couplings to vector bosons (κV ). The

remaining allowed region is in white. The green points are those for which also ΩDMh2 constraint is fulfilled.
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Direct detection of dark matter

σZ′N =
µ2

4π
g2
xg

2
hNN sin2 2α

(
1

M2
h1

− 1

M2
h2

)2

• scan range: 0.1 < gx < 1, 0 < λH < 0.25 and − 0.5 < κ < 0.5

• λH < λSM (light dark matter): 60 GeV <∼MZ′ <∼ 120 GeV,

• λH > λSM (heavy dark matter): 63 GeV <∼MZ′ <∼ 1000 GeV.
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Figure 9: The figure shows the DM-nucleon cross section, σZ′N , as a function of the DM mass MZ′ for points which satisfy all other

constraints for λH < λSM . The singlet quartic coupling is fixed at λS = 0.2. Colouring corresponds to the strength of the gauge coupling gx.

The nearly horizontal lines are the experimental limits for σZ′N from XENON100, LUX (2103) and anticipated results for XENON 1T.
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Figure 10: The left panel illustrates correlation between between Mh2
and MZ′, while the right one shows predictions for ΩDMh2 as

a function of MZ′. The colouring corresponds to the cross section σZ′N . Above the right box resonances and channels which open as MZ′

increases are shown. Coordinates in the parameter space (λH, κ, λS) and corresponding Mh2
and vx are shown above the right panel.
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Figure 11: The figure shows the DM-nucleon cross section, σZ′N , as a function of the DM mass MZ′ for points which satisfy all other

constraints for λH > λSM . The singlet quartic coupling is fixed at λS = 0.2. Colouring corresponds to the strength of the gauge coupling gx.

The solid lines are the experimental limits for σZ′N from XENON100, LUX (2103) and anticipated results for XENON 1T.
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Figure 12: The left panel illustrates correlation between between Mh2
and MZ′, while the right one shows predictions for ΩDMh2 as

a function of MZ′. The colouring corresponds the the cross section σZ′N . Above the right box resonances and channels which open as MZ′

increases are shown. Coordinates in the parameter space (λH, κ, λS) and corresponding Mh2
and vx are shown above the right panel.
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Figure 13: The left panel illustrates correlation between between Mh2
and MZ′, while the right one shows predictions for ΩDMh2

as a function of MZ′. The colouring corresponds to the cross section gx. Above the right box resonances and channels which open as MZ′

increases are shown. Coordinates in the parameter space (λH, κ, λS) and corresponding Mh2
and vx are shown above the right panel.
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Summary

• VDM model has been presented: Z ′ (DM), h2 (extra Higgs)

• Vacuum stability was addressed: absolute stability

• Cosmological consequences were discussed, VDM easily consistent with ΩDMh
2

and σZ′N

• Collider phenomenology: in progress
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