Multi-jet search 0 0000 000 All hadronic stop search 0000 0 Summary

Searches for *R*-Parity Violating Supersymmetry with Baryon Number Violation

Brett Jackson The ATLAS Collaboration

University of Pennsylvania

August 28, 2015

Multi-jet sea 0 0000 000 All hadronic stop search 0000 0 Summary

Introduction

- Generic MSSM violates leptons and baryon number
 - $W_{\Delta L=1} = \frac{1}{2} \lambda^{ijk} L_i L_j \bar{e}_k + \lambda^{\prime ijk} L_i Q_j \bar{d}_k + \mu^{\prime i} L_i H_u$
 - $W_{\Delta B=1} = \frac{1}{2} \lambda^{\prime\prime i j k} \bar{u}_i \bar{d}_j \bar{d}_k$
- Forbid these by imposing *R*-Parity conservation
 - $R = (-1)^{3(B-L)+2s}$
- Sufficient to forbid either baryon or lepton number violation
- This talk presents searches for baryon number violating processes
 - Multi-jet search: Phys. Rev. D 91, 112016 (2015)
 - All hadronic stop search: ATLAS-CONF-2015-026
- See Emma Torró's talk for lepton number violating processes

Multi-jet sear 0 0000 000 All hadronic stop search 0000 0 Summary

Table of contents

Introduction

Multi-jet search

Common features Jet counting Total jet mass

All hadronic stop search

Search strategy Results

Summary

Multi-jet search

All hadronic stop search

Summary

Table of contents

Introduction

Multi-jet search Common features Jet counting Total jet mass

All hadronic stop search Search strategy Results

Summary

Multi-jet search 0 0000 000 All hadronic stop search

Summary

Multi-jet search

Two complimentary search strategies
 Jet counting Exploits differences in the jet multiplicity

 Total jet mass Exploits difference in shape of the jet mass
 distribution

Multi-jet search

All hadronic stop search

Summary

Object definitions

- Standard jets
 - anti- $k_{\rm T}$ R = 0.4
 - $p_{\rm T} > 60~{
 m GeV}$ in all regions
- Large-*R* jets
 - anti- $k_{\rm T} R = 1.0$
 - Trim subjets if $p_{\mathrm{T}}^{i}/p_{\mathrm{T}}^{jet} < 0.05$
 - Mass constructed from trimmed jets
 - Used in total jet mass analysis
- *b*-tagging: 70% efficient when applied

Summary

Jet counting

- Looking for excess of events with \geq 6, \geq 7 high p_{T} jets
- Define 48 signal regions: optimal region selected for each model
 - *n*_{jet} ≥ 6,7
 - $p_{\rm T} > 80-220~{\rm GeV}$ in steps of 20 ${\rm GeV}$
 - $n_{b-\text{tagged}} \ge 0, 1, 2$

SM multijet background extrapolated from control regions

•
$$m_{\rm jet} = n_{\rm jet} - 2$$
 (depends on signal region)

•
$$N_{\rm SR} = \left(N_{\rm CR}^{\rm data} - N_{\rm CR, \ other \ BG}^{\rm MC}\right) \left(\frac{N_{\rm SR}^{\rm MC}}{N_{\rm CR}^{\rm MC}}\right) + N_{\rm SR, \ other \ BG}^{\rm MC}$$

Jet counting results: 6-quark model

Summary

Jet counting results: 6-quark model

Observed mass exclusion limits

BR(c)=0%

 $pp \rightarrow \tilde{g}\tilde{g} \rightarrow 6q$, BR(c)=0% All limits at 95% CL $\sqrt{s} = 8 \text{ TeV}$, 20.3 fb⁻¹

_							1000 🥽
t(t) [%	100	788	802	811	829	874	-950 ji
Ш	75	763	773	802	816	872	Lision Li
	50	666	817	780	809	831	-850 X
	25	680	681	759	810	863	-750 ¥
							Obse
	0	917	890	734	794	929	-700 0
		0	25	50	75	100	-650
	AT	LAS			BR	(b) [%]	

BR(c)=50 %

 $\begin{array}{l} pp {\rightarrow} \widetilde{g} \widetilde{g} {\rightarrow} 6q, \ BR(c) {=} 50\% \\ \mbox{All limits at } 95\% \ CL \quad \sqrt{s} = 8 \ TeV, \ 20.3 \ fb^{\cdot 1} \end{array}$

Summary

Jet counting results: 10-quark model

• Expected and observed mass exclusion limits

Multi-jet search

All hadronic stop search 0000 0 Summary

Total jet mass

- Total jet mass = scalar sum of masses of four leading large-*R* jets
 - $M_{\mathrm{J}}^{\Sigma} = \sum m_{\mathrm{jet}}$
- Also use $|\Delta \eta|$ between leading two large-*R* jets to provide additional discrimination

Region	$n_{\rm jet}$	$ \Delta \eta $	p_T^3	p_T^4	M_J^{Σ}
Name			[GeV]	[GeV]	[GeV]
3jCR	$n_{\rm jet} = 3$	-		-	-
4iCB	$n \rightarrow 4$	> 1.40	> 100	> 100	-
4JOII	n _{jet} ≤ 4	/ 1.40	> 250	/ 100	-
4iVR	$n \rightarrow 4$	1.0-1.40	> 100	> 100	-
-1) / 10	$n_{\text{jet}} \ge 4$	1.0 1.40	> 250	/ 100	-
SR1			> 250		> 625
SR100	$n_{\rm jet} \ge 4$	< 0.7	> 100	> 100	> 350 (binned)
SR250			> 250		> 350 (binned)

All hadronic stop search

Summary

Background estimate

- Extract jet mass templates from 3-jet control region
 - Probability density function for mass of a given jet
 - Function of jet p_{T} and η
- Use mass templates to construct data driven estimate
 - Apply jet mass template to each jet in event
 - Combine resulting masses to predict total jet mass for event

Total jet mass results: 10-quark model

• Expected and observed mass exclusion limits

Multi-jet searc 0 0000 0000 All hadronic stop search

Summary

Table of contents

Introduction

Multi-jet search Common feature Jet counting Total int mass

All hadronic stop search

Search strategy Results

Summary

Summary

All hadronic stop search

- Targets direct production of light stops
 - $m_{\tilde{t}} = 100 400 \text{ GeV}$
 - Region previously missed because of trigger requirement
- Search for resonant decay of stops
 - Each stop decays to two SM quarks
 - Fully hadronic final state

Multi-jet searc 0 0000 000 All hadronic stop search

Summary

Strategy

- Difficult to target light stops at the LHC
 - Multijet trigger applies heavy prescale
 - Hard to distinguish 4-jet final state from QCD multijet background
- Using boosted jets, it is possible to work around these challenges
 - Cross sections are high for light stops. Able to cut hard on stop p_{T}
 - Recluster jets into two large-R jets with substructure
- Require *b*-tagged jets
 - This restricts the search to 3rd generation couplings only

Multi-jet sear 0 0000 000 All hadronic stop search

Summary

Selection

Jets

- anti- $k_{\rm T}$ R = 0.4
- $p_{\rm T}>20~{
 m GeV}$
- "Large-*R*" jets
 - Recluster groomed jets using anti- $k_{\rm T}~R=1.5$
 - *p*_T > 200 GeV
 - *m* > 20 GeV
 - Require at least two large-R jets
- Trigger
 - Leading R=0.4 jet with $p_{
 m T}>175~{
 m GeV}$
 - $H_{\rm T} = \sum p_{\rm T} > 650 \,\, {
 m GeV}$
- *b*-tagging
 - Applied on R = 0.4 jets
 - 70% efficient working point

Signal region

- Number of *b*-tagged jets ≥ 2
- Mass asymmetry between leading and sub-leading large-R jets
 - Expect stops to have equal mass
 - No preference for QCD jets
 - $\mathcal{A} = \left| \frac{m_1 m_2}{m_1 + m_2} \right| < 0.1$
- Angle between the stop pair and the beam axis in center-of-mass frame
 - Distinguishes between centrally produced massive particles (stops) and high-mass forward-scattering event from QCD
 - $|\cos \theta^*| < 0.3$
- Subjet *p*_T ratio
 - Applied to leading two large-*R* jets $\frac{\min[p_T(a), p_T(b)]}{\max[p_T(a), p_T(b)]} > 0.3$

Signal region

- Number of *b*-tagged jets ≥ 2
- Mass asymmetry between leading and sub-leading large-R jets
 - Expect stops to have equal mass
 - No preference for QCD jets
 - $\mathcal{A} = \left| \frac{m_1 m_2}{m_1 + m_2} \right| < 0.1$
- Angle between the stop pair and the beam axis in center-of-mass frame
 - Distinguishes between centrally produced massive particles (stops) and high-mass forward-scattering event from QCD
 - $|\cos \theta^*| < 0.3$
- Subjet *p*_T ratio
 - Applied to leading two large-*R* jets $\frac{\min[p_T(a), p_T(b)]}{\max[p_T(a), p_T(b)]} > 0.3$

Multi-jet search 0 0000 000 All hadronic stop search

Summary

Background estimation

- SM multijet background estimated from sideband regions
 - Assumes the $m_{\mathrm{avg}}^{\mathrm{jet}}$ distribution does not depend on the *b*-jet multiplicity
- $t\bar{t}$ estimate taken from Monte Carlo simulation

ATLAS Preliminary

√s=8 TeV, 17.4 fb⁻¹

250 300 350 400

Results

- Search performed in regions of the average mass of the leading two large-*R* jets: $m_{\text{avg}}^{\text{jet}} = \left(m_1^{\text{jet}} + m_2^{\text{jet}}\right)/2$
- No observed excess
- Stops with mass between $100 \le m_{\tilde{t}} \le 310$ GeV were excluded

 $m_{\tilde{\tau}}$ [GeV]

Multi-jet sear 0 0000 000 All hadronic stop search 0000 0 Summary

Table of contents

Introduction

Multi-jet search

Common features Jet counting Total jet mass

All hadronic stop search

Search strategy Results

Summary

All hadronic stop search 0000 0 Summary

Summary

- Presented ATLAS searches for RPV SUSY with baryon number violation
- Lower mass limits on gluino production
 - $m_{ ilde{g}} > 917~{
 m GeV}$ when gluino decays to six light quarks
 - $m_{ ilde{g}} > 1 \,\, {
 m TeV}$ when gluino has cascade decay to ten quarks
- Limits on stop decaying to all hadronic final state
 - Exclude stops with mass $100 \le m_{ ilde{t}} \le 310 \; {
 m GeV}$

22 / 22

Multi-jet search 0 0000 000 All hadronic stop search

Summary

Backup

Summary

Jet counting results: 6-quark model

Expected mass exclusion limits

BR(c)=0%

pp→ $\tilde{g}\tilde{g}$ →6q, BR(c)=0% All limits at 95% CL \sqrt{s} = 8 TeV, 20.3 fb⁻¹

 $pp \rightarrow \tilde{g}\tilde{g} \rightarrow 6q$, BR(c)=50% All limits at 95% CL $\sqrt{s} = 8 \text{ TeV}$, 20.3 fb⁻¹

Summary

Jet counting event yields: 6 quark model

Sample	Jet p_T	# of	# of	Signal	Back-	Data					
$m_{\tilde{g}}$	req.	jets	b-tags	(Acceptance)	ground						
[GeV]	[GeV]										
	(BR(t), BR(b), BR(c)) = (0%, 0%, 0%)										
500	120	7	0	$600\pm230~(0.7\%)$	370 ± 60	444					
600	120	7	0	$410 \pm 100 \ (1.5\%)$	370 ± 60	444					
800	180	7	0	$13 \pm 4 \ (0.4\%)$	6.1 ± 2.2	4					
1000	180	7	0	6.8±2.3 (1.4%)	6.1 ± 2.2	4					
1200	180	7	0	2.7±0.5 (3.0%)	6.1 ± 2.2	4					
	(1	BR(t), I	BR(b), B	R(c))=(0%, 100%, 0)	%)						
500	80	7	2	$1900 \pm 400 \ (2.1\%)$	1670 ± 190	1560					
600	120	7	1	$300\pm60~(1.1\%)$	138 ± 26	178					
800	120	7	1	131 ± 25 (4.1%)	138 ± 26	178					
1000	180	7	1	$4.4 \pm 1.0 \ (0.9\%)$	2.3 ± 1.0	1					
1200	180	7	1	1.86 ± 0.31 (2.1%)	2.3 ± 1.0	1					
	(1	BR(t), I	BR(b), B	R(c)) = (100%, 0%, 0)	%)						
500	80	7	1	$4600 \pm 800 (5.0\%)$	5900 ± 700	5800					
600	100	7	1	940 ± 190 (3.5%)	940 ± 140	936					
800	120	7	1	$108 \pm 18 (3.4\%)$	138 ± 26	178					
1000	120	7	1	42±6 (8.5%)	138 ± 26	178					
1200	180	7	1	$1.3 \pm 0.4 \ (1.5\%)$	2.3 ± 1.0	1					
(BR(t), BR(b), BR(c)) = (100%, 100%, 0%)											
500	80	7	2	3600 ± 600 (3.9%)	1670 ± 190	1560					
600	80	7	2	2300 ± 400 (8.6%)	1670 ± 190	1560					
800	120	7	2	$94{\pm}15$ (3.0%)	38 ± 17	56					
1000	120	7	2	37±6 (7.5%)	38 ± 17	56					
1200	140	7	2	5.5 ± 1.0 (6.2%)	10 ± 5	18					

25 / 22

All hadronic stop search 0000 0 Summary

Jet counting results event yields: 10 quark model

Sample	Jet $p_{\rm T}$ req.	# jets	# b-tagged jets	Signal	Background	Data
$(m_{\tilde{g}}, m_{\tilde{\chi}_{1}^{0}})$	[GeV]			(Acceptance)		
(400 GeV, 50 GeV)	80	7	2	$1900 \pm 400 \ (0.5\%)$	1670 ± 190	1558
(400 GeV, 300 GeV)	80	7	2	$2500\pm600~(0.7\%)$	1670 ± 290	1558
(600 GeV, 50 GeV)	120	7	1	$180 \pm 40 \ (0.7\%)$	138 ± 26	178
(600 GeV, 300 GeV)	80	7	2	2200 ± 350 (8.3%)	1670 ± 200	1558
(800 GeV, 50 GeV)	120	7	1	$95{\pm}16$ (3.0%)	138 ± 26	178
(800 GeV, 300 GeV)	120	7	1	172 ± 28 (5.4%)	138 ± 26	178
(800 GeV, 600 GeV)	120	7	1	150 ± 23 (4.7%)	138 ± 26	178
(1000 GeV, 50 GeV)	220	6	1	7.0±1.3 (1.4%)	3.8 ± 3.0	5
(1000 GeV, 300 GeV)	120	7	1	67±8 (14%)	138 ± 26	178
(1000 GeV, 600 GeV)	120	7	1	$101 \pm 13 (20\%)$	138 ± 26	178
(1000 GeV, 900 GeV)	120	7	1	$33 \pm 4 \ (6.7\%)$	138 ± 26	178
(1200 GeV, 50 GeV)	220	6	1	$3.8 \pm 0.7 (4.3\%)$	3.8 ± 3.0	5
(1200 GeV, 300 GeV)	180	7	1	2.01 ± 0.32 (2.3%)	2.3 ± 1.0	1
(1200 GeV, 600 GeV)	140	7	1	$18.9 \pm 2.3 (21\%)$	41 ± 12	45
(1200 GeV, 900 GeV)	140	7	1	$12.6 \pm 1.5 (14\%)$	41±12	45

Total jet mass results event yields

SR1

Summary yield table for Sitt									
$M_{\mathbf{J}}^{\Sigma}$ Bin	Expected SM	Obs.	$m_{\tilde{g}} = 600 \text{ GeV}$ $m_{\chi_1^0} = 50 \text{ GeV}$	$m_{\tilde{g}} = 1 \text{ TeV}$ $m_{\tilde{\chi}_1^0} = 600 \text{ GeV}$	$m_{\tilde{g}} = 1.4 \text{ TeV}$ $m_{\tilde{\chi}_1^0} = 900 \text{ GeV}$				
$> 625 { m ~GeV}$	$160 \pm 9.7 {+40 \\ -34}$	176	$70\pm4.2\pm25\pm30~(0.26\%)$	55 ± 0.51 ±8.6 ±14 (11%)	$6.3 \pm 0.07 \pm 0.46 \pm 2.5 (35\%)$				

1.1.1.4.1.1. C. CD1

a

SR100

Summary yield table for SR100

$M_{\mathbf{J}}^{\Sigma}$ Bin	Expected SM	Obs.	$m_{\tilde{g}} = 600 \text{ GeV}$ $m_{\tilde{\chi}_{1}^{0}} = 50 \text{ GeV}$	$m_{\tilde{g}} = 1 \text{ TeV}$ $m_{\tilde{\chi}_1^0} = 600 \text{ GeV}$	$m_{\tilde{g}} = 1.4 \text{ TeV}$ $m_{\tilde{\chi}_1^0} = 900 \text{ GeV}$			
350 - 400 GeV	$4300\pm78^{+510}_{-500}$	5034	$200 \pm 7.2 \pm 22 \pm 35$	$5.8 \pm 0.17 \pm 1.3 \pm 1.5$	$0.19 \pm 0.01 \pm 0.04 \pm 0.07$			
400 - $450~{\rm GeV}$	$2600 \pm 49 + 380 \\ -380$	2474	$200.\pm7.1\pm9.5\pm35$	$9.7 \pm 0.21 \pm 2.2 \pm 2.5$	$0.31 \pm 0.02 \pm 0.07 \pm 0.12$			
450 - $525~{\rm GeV}$	$2100\pm 42 + 360 \\ -360$	1844	$280.\pm8.4\pm13\pm49$	$26 \pm 0.35 \pm 4.3 \pm 6.7$	$0.88 {\pm} 0.03 {\pm} 0.14 {\pm} .34$			
525 - $725~{\rm GeV}$	$960\pm 25 + 200 \\ -200$	1070	$280.\pm8.4\pm57\pm49$	$77 \pm 0.60 \pm 3.2$	$3.6 {\pm} 0.05 {\pm} 0.36 {\pm} 1.4$			
$> 725 { m ~GeV}$	$71\pm7.0 + 32 \\ -27$	79	$35.\pm2.9\pm18\pm6.0$	$35 \pm 0.40 \pm 9.9 \pm 9.0$	$4.8 {\pm} 0.06 {\pm} 0.61 {\pm} 1.9$			

SR250

Summary yield table for SR250

$M_{\mathbf{J}}^{\Sigma}$ Bin	Expected SM	Obs.	$m_{\tilde{g}} = 600 \text{ GeV}$ $m_{\tilde{\chi}_{1}^{0}} = 50 \text{ GeV}$	$m_{\tilde{g}} = 1 \text{ TeV}$ $m_{\tilde{\chi}_1^0} = 600 \text{ GeV}$	$m_{\tilde{g}} = 1.4 \text{ TeV}$ $m_{\tilde{\chi}_1^0} = 900 \text{ GeV}$			
350 - 400 GeV	$1400 \pm 35 + 120 \\ -134$	1543	$83 \pm 4.6 \pm 15 \pm 14$	$3.3 \pm 0.12 \pm 0.78 \pm 0.85$	$0.17 \pm 0.01 \pm 0.03 \pm 0.07$			
400 - $450~{\rm GeV}$	$920\pm33^{+140}_{-140}$	980	$92{\pm}4.8 \pm 11{\pm}16$	$5.6 \pm 0.16 \pm 1.5 \pm 1.5$	$0.27{\pm}0.01 \pm 0.07{\pm}0.11$			
450 - $525~{\rm GeV}$	$780\pm33 \begin{array}{c} +94 \\ -94 \end{array}$	823	$140\pm5.8 \pm 15\pm23$	$17 \pm 0.28 \pm 3.3 \pm 4.4$	$0.79 \pm 0.02 \pm 0.13 \pm 0.31$			
525 - $725~{\rm GeV}$	$490\pm24 \begin{array}{c} +67\\ -67\end{array}$	495	$160{\pm}6.2 \pm 30.{\pm}27$	$56\pm0.51 \pm 4.1\pm15$	$3.3 \pm 0.05 \pm 0.34 \pm 1.3$			
$> 725 { m ~GeV}$	$37 \pm 5.5 + 16 \\ -12$	42	$22\pm2.3\ \pm9.1\pm3.9$	$27\pm0.36\pm7.4\pm7.0$	$4.4 \pm 0.06 \pm 0.56 \pm 1.7$			

All hadronic stop search 0000 0 Summary

All hadronic stop search event yields

$m_{\tilde{t}} [{ m GeV}]$	Window [GeV]	$N_B^{\rm data-driven \ est.}$	$N_B^{t\bar{t} \text{ est.}}$	$N_B^{\text{tot. est.}}$	N _{data}	N_S
100	[95, 115]	405 ± 50	37 ± 29	442 ± 58	391	540 ±130
125	[115, 135]	440 ± 46	64 ± 36	504 ± 59	484	510 ±130
150	[135, 165]	604 ± 59	98 ± 50	702 ± 77	680	490 ± 140
175	[165, 190]	416 ± 46	62 ± 34	478 ± 58	503	379 ± 82
200	[185, 210]	351 ± 47	15 ± 11	366 ± 48	363	285 ± 61
225	[210, 235]	236 ± 38	2.5 ± 2.5	238 ± 38	270	170 ± 30
250	[235, 265]	162 ± 30	1.1 ± 1.1	163 ± 30	169	124 ± 28
275	[260, 295]	94 ± 21	0.78 ± 0.78	95 ± 21	79	70 ± 19
300	[280, 315]	63 ± 17	0.75 ± 0.70	64 ± 17	54	46 ± 10
325	[305, 350]	39 ± 13	0.59 ± 0.40	39 ± 13	47	28.7 ± 6.9
350	[325, 370]	23.9 ± 9.6	0.16 ± 0.096	24.0 ± 9.6	38	19.3 ± 4.2
375	[345, 395]	16.2 ± 8.0	0.076 ± 0.072	16.3 ± 8.0	21	12.6 ± 3.0
400	[375, 420]	8.8 ± 5.6	0.071 ± 0.071	8.9 ± 5.6	6	7.8 ± 1.8