SUSY searches with photon and tau signatures

Alex Kastanas (University of Bergen)

On Behalf of the ATLAS Collaboration

SUSY 15 24/08/2015

Introduction

An overview of ATLAS SUSY searches targeting final states with photons and taus

- Considering R-parity conserving models with large E_Tmiss signatures
- Promptly decaying sparticles
- Strong production is the main focus, for more on:
 - Electroweak see talk by Christopher Bock
 - Third generation see talk by Pierfransesco Butti
- All results using the full 2012 8 TeV 20.3 fb-1 dataset
- The analyses are particularly motivated in the context of gauge-mediated symmetry breaking, where the LSP is a gravitino

The following final states are covered:

•	Two photons	/ Photon +	jets/e/mu	1507.05493
---	-------------	------------	-----------	------------

• Higgs to photon +
$$E_T^{miss}$$
 ATLAS-CONF-2015-001

One tau / two taus / taus plus e/mu 1407.0603Summary paper 1507.05525

Photons + Etmiss Analysis overview

The analysis targets processes in the GGM model

- Strong and electroweak production considered
- Decay chains largely determined by the NLSP
- Each channel focused on a specific NLSP type
- Further split for high- and low-mass NLSP

Event selection:

Channel 1) > 1 photon 2) > 0 photon plus b-jet 3) = 1 photon plus multiple jets 4) > 0 photon plus electron/muon

<u>Trigger</u>

two photon trigger single photon trigger single photon trigger single photon trigger

Wino

Selection Diphoton and photon + (b-)jet

Signal Region BWH	$SR_{S-L}^{\gamma\gamma}$	$SR_{S-H}^{\gamma\gamma}$	$\mathrm{SR}_{\mathrm{W-L}}^{\gamma\gamma}$	
No. photons $(E_T [GeV])$	> 1 (> 75)	> 1 (> 75)	> 1 (> 75)	>1 (>75)
$E_{\mathrm{T}}^{\mathrm{miss}} \; [\mathrm{GeV}]$	> 150	> 250	> 150	> 200
$H_{ m T} \ [{ m GeV}]$	_	_	> 600	> 400
$m_{ m eff}~{ m [GeV]}$	> 1800	> 1500	_	_
$\Delta \phi_{\min}(\text{jet}, E_{\text{T}}^{\text{miss}})$ (No. leading jets)	> 0.5 (2)	> 0.5 (2)	> 0.5(2)	> 0.5 (2)
$\Delta\phi_{ m min}(\gamma,E_{ m T}^{ m miss})$	_	> 0.5	_	> 0.5

Higher energy scale in SUSY events

E_Tmiss well reconstructed

Signal Region	$ ext{SR}_{ ext{L}}^{ ext{\gamma} ext{b}}$	$ ext{SR}_{ ext{H}}^{ ext{7} ext{b}}$	$\mathrm{SR}_\mathrm{L}^{\gamma\mathrm{j}}$	$\mathrm{SR}_\mathrm{H}^{\gamma\mathrm{j}}$
No. photons $(E_{\rm T} [{\rm GeV}])$	> 0 (> 125)	> 0 (> 150)	1 (> 125)	1 (> 300)
$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	> 100	> 200	> 200	> 300
$H_{ m T}~{ m [GeV]}$	_	> 1000	_	> 800
No. jets (No. b -jets)	2-4 (> 1)	> 3 (> 0)	$> 3^{a}$	$> 1^{a}$
No. leptons	0	_	0	0
$M_{bb} [{ m GeV}]$	75 - 150	_	_	_
$M_{\mathrm{T}}^{\gamma,E_{\mathrm{T}}^{\mathrm{miss}}}$ [GeV]	> 90	> 90	_	_
$\Delta \hat{\phi}_{\min}(\text{jet}, E_{\text{T}}^{\text{miss}})$ (No. leading jets)	> 0.3(2)	> 0.3 (4)	> 0.4(2)	> 0.4(2)
$R_{ m T}^4$	_	_	< 0.85	
$\Delta \phi_{\min}({ m jet}, \gamma)$	_	_	_	< 2.0

ttbar

 $W \rightarrow e \nu$ (e misreconstructed)

Softer n_{iet} spectrum in SM

Selection Photon + lepton

Signal Region	$\mathrm{SR}_e^{\gamma\ell}$	$\mathrm{SR}^{\gamma\ell}_{\mu}$	
No. photons $(E_{\rm T} [{\rm GeV}])$	> 0 (> 125)	> 0 (> 125)	•
$E_{\rm T}^{ m miss} \; [{ m GeV}]$	> 120	> 120	
$H_{ m T}^{ m jets}~{ m [GeV]}$	< 100	< 100	ttbar
No. leptons	> 0 (e)	$> 0 \; (\mu)$	
$ M_{e\gamma} - M_Z $ [GeV]	(> 15)	_	Z → e e
$M_{\mathrm{T}}^{\ell,E_{\mathrm{T}}^{\mathrm{miss}}}$ [GeV]	> 120	> 120	$W \rightarrow \ell \nu / ttbar$
$\Delta R(\ell,\gamma)$	> 0.7	> 0.7	

Many different SRs covering a wide range of models and NLSP masses

Background estimation

The main analysis backgrounds in all SRs come from

- Associated production of real photons with vector bosons or top and $E_{\mathsf{T}}^{\mathsf{miss}}$ from neutrinos
- Jets or electrons misidentified as photons
- QCD events with real photons and E_Tmiss from instrumental effects

For these main backgrounds <u>data-driven estimates</u> are made, to decrease systematic uncertainties

Significant variation in background estimation regions used between channels, due to different selections

Results

No significant excess above SM expectation observed in any of the 10 signal regions

- Largest excess seen in photon + electron channel, 6% probability of such excesses
- Limits on maximum number of events expected in each SR as well as the upper limit on the cross section set

Signal region	$N_{ m obs}$	$N_{ m exp}^{ m SM}$	$S_{ m obs}^{95}$	$\langle \epsilon \sigma \rangle_{\rm obs}^{95} [{\rm fb}]$	$\langle \epsilon \sigma \rangle_{ m exp}^{95} [{ m fb}]$
$\overline{\mathrm{SR}_{\mathrm{S-L}}^{\gamma\gamma}}$	0	$0.06^{+0.24}_{-0.03}$	3.0	0.15	0.15 ± 0.01
$SR_{S-H}^{\tilde{\gamma}\gamma}$	0	$0.06^{+0.24}_{-0.04}$	3.0	0.15	0.15 ± 0.01
$SR_{W-L}^{\gamma\gamma}$	5	$2.04^{+0.82}_{-0.75}$	8.2	0.41	$0.25^{+0.09}_{-0.06}$
$SR_{W-H}^{\gamma\gamma}$	1	$1.01^{+0.48}_{-0.42}$	3.7	0.18	$0.18^{+0.07}_{-0.02}$
$SR_{L}^{\gamma b}$ $SR_{H}^{\gamma b}$ $SR_{L}^{\gamma j}$	12	18.8 ± 5.4	8.1	0.40	$0.57^{+0.24}_{-0.16}$
$\mathrm{SR}_\mathrm{H}^{\overline{\gamma}\mathrm{b}}$	2	3.82 ± 1.25	4.0	0.20	$0.27^{+0.09}_{-0.07}$
$\mathrm{SR}_{\mathrm{L}}^{\widehat{\gamma}\widehat{j}}$	2	1.27 ± 0.43	5.5	0.27	$0.19_{-0.06}^{+0.10}$
$SR_{H}^{\tilde{\gamma}j}$	2	0.84 ± 0.38	5.6	0.28	$0.20^{+0.11}_{-0.05}$
$\mathrm{SR}_e^{\gamma\ell}$	16	10.5 ± 1.4	14.2	0.70	$0.41^{+0.20}_{-0.12}$
$\mathrm{SR}^{\gamma\ell}_{\mu}$	10	14.1 ± 1.5	6.0	0.30	$0.45^{+0.21}_{-0.14}$

Interpretation

Interpretation

Excluded: 124 GeV $< M_{\widetilde{w}} < 361$ GeV

Higgs to photon + E_Tmiss

In GMSB and NMSSM models the following processes can take place

1)
$$h \to \widetilde{\chi^0}_1 / \widetilde{\chi^0}_2 \widetilde{G} / \widetilde{\chi^0}_1 \to \gamma \widetilde{G} / \widetilde{\chi^0}_1 \widetilde{G} / \widetilde{\chi^0}_1$$

2)
$$h \rightarrow \widetilde{\chi}^0_1 / \widetilde{\chi}^0_2 \widetilde{\chi}^0_1 / \widetilde{\chi}^0 \rightarrow \gamma \gamma \widetilde{G} / \widetilde{\chi}^0_1 \widetilde{G} / \widetilde{\chi}^0_1$$

Signature: Etmiss + photon

→ Trigger: Photon + Etmiss

Higgs production through VBF considered

- two additional jets
- widely separated
- High m_{jj}

Main backgrounds

- W/Z + jets
 - Electron/jet/tau misidentification
- Multijets and gamma + jets

No excess above SM observed

 Upper limits set on the cross-section x BR for these processes

First ATLAS limits on the cross-section of such processes

Tau + jets + E_T^{miss} Analysis Overview

CERN-PH-EP-2014-144 CERN-PH-EP-2015-162

jet + E_Tmiss trigger

jet + E_Tmiss trigger

electron trigger

muon trigger

Four analysis channels

1) Exactly one tau

2) At least two taus

3) At least one tau and one electron

4) At least one tau and one muon

Additional selections:

- QCD rejection
- SM rejection (H_T / m_{eff} / E_T^{miss})

All channels orthogonal to each other

- Within each channel signal regions target specific signal types
- Statistical combination performed where relevant

In the summary paper the analysis results combined with other SUSY analyses where applicable

The best performing analysis is picked for each signal point.

Taus + jets + E_T^{miss} Background estimation

CERN-PH-EP-2014-144 CERN-PH-EP-2015-162

Main analysis backgrounds

- ttbar and single top
- W → **T v** + jets
- Z → **T T** + jets
- Z → v v + jets
- Multijets

Data-driven estimation, others from simulation directly

Example from one-tau analysis:

- W/Z + jets and top estimated in control regions
 - The number of events from each process estimated from data using matrix inversion
 - Scale factors to normalise distributions to data produced
- Multijet background estimated from data using ABCD method

Results

CERN-PH-EP-2014-144 CERN-PH-EP-2015-162

	N _{obs}	N _{exp} _{SM}	S _{obs} ⁹⁵	<εσ> _{obs} (fb)
1 tau loose	12	10.5 ± 1.4 ± 2.6	11.7	0.58
1 tau tight	3	$2.4 \pm 0.4 \pm 0.8$	5.9	0.29
2 tau inclusive	3	$2.9 \pm 0.4 \pm 0.7$	5.7	0.28
2 tau GMSB	0	$0.28 \pm 0.10 \pm 0.22$	3.4	0.17
2 tau nGM	1	$3.1 \pm 0.5 \pm 0.9$	3.8	0.18
2 tau bRPV	1	$1.09 \pm 0.19 \pm 0.39$	4.1	0.20
tau+e GMSB	1	$1.34 \pm 0.33 \pm 0.80$	4.1	0.20
tau+e nGM	8	$4.3 \pm 0.9 \pm 2.0$	11.4	0.56
tau+e bRPV	3	$4.0 \pm 0.8 \pm 1.3$	5.3	0.26
tau+e mSUGRA	14	$10.0 \pm 1.4 \pm 3.0$	14.6	0.72
tau+mu GMSB	2	$0.98 \pm 0.31 \pm 0.35$	5.3	0.26
tau+mu nGM	2	$3.6 \pm 0.9 \pm 1.2$	4.6	0.23
tau+mu bRPV	7	2.5 ± 0.6 ± 1.0	10.6	0.52
tau+mu mSUGRA	9	9.9 ± 1.5 ± 3.3	9.9	0.49

No excess observed above SM expectation in any signal region

Signal scenario	1τ SR	2τ SR	$\tau+$ lepton SR
GMSB	Tight	GMSB	GMSB
nGM	_	nGM	nGM
bRPV	Tight	bRPV	bRPV
mSUGRA	Tight	-	mSUGRA

Interpretations

CERN-PH-EP-2014-144

CERN-PH-EP-2015-162

nGM, bRPV-MSUGRA and mGMSB

mGMSB

Combination with 3 letpton channel

Best exclusion 3 lepton channel

 $\Lambda > 75 \text{ TeV}$

Interpretation Simplified two-step grids

CERN-PH-EP-2014-144 CERN-PH-EP-2015-162

m_g > 1220 GeV (light neutralino)

 $m_{\tilde{\chi}} > 280 \text{ GeV}$ (light gluino)

m_q > 850 GeV (light neutralino)

 $m_{\tilde{\chi}} > 160 \text{ GeV}$ (light squark)

Conclusions

A large number of results for photon and tau signatures

- Many channels considered covering a wide range of final states
- No excesses above SM observed so far
- Limits set in a wide variety of models

Next round of searches for run-II already in progress!

Papers presented

I. "Search for photonic signatures of gauge-mediated supersymmetry in 8 TeV pp collisions with the ATLAS detector"

CERN-PH-EP-2015-168 arXiv

II. "Search for exotic Higgs-boson decays in events with at least one photon, missing transverse momentum, and two forward jets produced in $s = \sqrt{8}$ TeV pp collisions with the ATLAS detector"

ATLAS-CONF-2015-001 CDS

III. "Search for supersymmetry in events with large missing transverse momentum, jets, and at least one tau lepton in 20 fb⁻¹ of s= $\sqrt{8}$ TeV proton-proton collision data with the ATLAS detector"

CERN-PH-EP-2014-144 arXiv

IV. "Search for supersymmetry in events with large missing transverse momentum, jets, and at least one tau lepton in 20 fb⁻¹ of s $\sqrt{-8}$ TeV proton-proton collision data with the ATLAS detector"

CERN-PH-EP-2015-162 arXiv

Back-up material

Photon analysis Data/MC comparison

Tau + jets + E_T^{miss} Background estimation methods

	_	_		
Background	1τ	2τ	$\tau + lepton$	
W+jets (true)	matrix inversion	matrix inversion	-	
$W+{\rm jets}$ (fake)	matrix inversion	matrix inversion	matrix inversion	
Z+jets (true)	with W +jets	matrix inversion	-	
Z+jets (fake)	with W +jets	_	-	
Top (true)	matrix inversion	matrix inversion	matrix inversion	
Top (fake)	matrix inversion	matrix inversion	matrix inversion	
Multijets	ABCD method	jet-smearing method	matrix method	
Dibosons	from simulation	from simulation	from simulation	

Background estimation methods used in each analysis channel

- Generally split between true and fake tau contributions.
- These can be different as they arise from mismodelling in misidentified jets