Searches for R-Parity violating SUSY with lepton number violation

Emma Torró (on behalf of the ATLAS Collaboration) Univ. of Washington - Seattle

SUSY 2015

Lake Tahoe, USA 28 August 2015

Introduction

- R = (-1)^{3(B L) +2s} = +1 for SM particles - 1 for SUSY particles
- Lepton (L) and baryon (B) number violation are experimentally constrained but not forbidden by any fundamental reason.
- Standard SUSY searches assume R-Parity Conservation (RPC).
- Introducing non-zero RPV couplings → rich phenomenology, can weaken mass and crosssection limits from collider experiments.

Introduction

- This talk presents the latest results from the ATLAS experiment:
 - 20 fb⁻¹ of pp LHC collision data at 8 TeV
 - searches for RPV SUSY with LSPs decaying promptly through LFV couplings for:

		Simplified models			els	pMSSM	Ref.
	Analysis short name	LLE (ĝĝ)	LQD (ĝĝ)	LQD (q̃q̃)	LLE + LQD	bRPV	
-CONF-2015-01	4L	\checkmark					Phys. Rev. D. 90, 052001 (2014)
	SS/3L	\checkmark				1	<u>JHEP 06 (2014) 035</u>
	1L		1	1			Phys. Rev. Lett. 114, 161801 (2015)
	OL 2-6 jets		1	1			<u>JHEP 09 (2014) 176</u>
<u>SPV</u>	0L 7-10 jets		1				<u>J. High Energy Phys. 10 (2013) 130</u>
	🧧 eμ, eτ, μτ				1		Phys. Rev. Lett. 115, 031801 (2015)
	B-L (Not covered in this talk. See backup for summary)						ATLAS-CONF-2015-015

• Dedicated analysis searching for heavy resonances

 Reinterpretation in terms of LFV-RPV of searches originally developed to target RPC models.
 This talk will focus more on the model description and interpretation of final results than on the analyses.

RPV summary paper

ATLAS-CONF-2015-018

Analyses considered for the RPV summary paper

Models: LLE terms

• Simplified model: neutralino LSP decays into two charged leptons and a neutrino

• All possible combinations of e, μ , τ simulated with LSP BRs varying among 4 extreme cases (I = e, μ):

Models: LLE terms

• Simplified model: neutralino LSP decays into two charged leptons and a neutrino

• All possible combinations of e, μ , τ simulated with LSP BRs varying among 4 extreme cases (I = e, μ):

• Each simulated LLE and LQD sample is generated with a fixed mass ratio:

$$R = \frac{m(\tilde{\chi}_1^0)}{m(\text{NLSP})} = 0.1, 0.5 \text{ or } 0.9$$

• R determines how the available energy is shared between the final-state objects Lower R softer LSP decay products more energetic particles from the NLSP decays

• May affect the choice of the best-performing signal region for a given model.

SUSY15

Results on LLE

- Lower limits on the gluino mass for R=0.9, set from:
 - 4L analysis (SR0noZb: at least 4 light leptons): strongest limits: $m(\tilde{g}) > 1350 \text{ GeV}$
 - SS/3L analysis (SR3Lhigh: at least 3 light leptons): weaker limits: m(g̃) > 1140 GeV
 - Combination 4L + SS/3L
 - Limits weaken as the number of light leptons per event decreases
 - Cases R=0.1, 0.5 similar results, see backup.

Models: LQD terms

- 2 Simplified models: LQD gluino; LQD squark: neutralino LSP decays into two quarks and a lepton

 ℓ/ν

q

q

- A specific λ'_{ijk} allows $\tilde{\chi}_{l}^{0} \rightarrow \ell_{i} u_{j} d_{k}$ and $\tilde{\chi}_{l}^{0} \rightarrow v_{i} d_{j} d_{k}$
- All possible combinations of e, μ , τ simulated with LSP BRs varying among 4 extreme cases:

Q

Results on LQD gluino

• Model nominally produces 8 jets \rightarrow strongest constraints for R=0.1, 0.5 set by 0L + 7-10 jets analysis: m(\tilde{g}) > 1180 GeV

• Statistical combination of SR with/without b-jets \rightarrow mass limits shows dependence on BR(b)

• Veto on light leptons \rightarrow weaker limits in low BR(τ)

• R=0.9: compressed SUSY spectrum \rightarrow 0L + 7-10 no longer produces best results. More powerful results for 1L and 0L + 2-6 jets analyses. See backup.

Results on LQD squark

- Model nominally produces 6 jets \rightarrow strongest constraints set by:
 - 1L for $BR(\tau) < 0.1$: $m(\tilde{g}) > 1120 \text{ GeV}$
 - OL + 2-6 jets analysis for $BR(\tau) > 0.3$: $m(\tilde{g}) > 1050 920$ GeV
 - combination of both in BR(τ) = (0.1, 0.3): m(\tilde{g}) > 1060 980 GeV

• No dependency on BR(b) since neither analysis requires/vetoes on b-jets. Similar result obtained for R=0.9 (see backup).

Models: bRPV terms

• ATLAS searches have set limits on mSUGRA bRPV: $m(\tilde{g}) \ge 1.35$ TeV, comparable to RPC limits.

- Here first time to explore **bRPV** Natural SUSY:
 - f and higgsinos mass < 1 TeV
 - Other masses: less stringent constraints survive
- phenomenological MSSM (pMSSM) compatible with:
 - Observed Higgs mass
 - Measurements of v oscillations
 - Main production processes: <code>ťť</code> , $\tilde{\chi}^{0}$, $\tilde{\chi}^{\pm}$
 - Free parameters:
 - μ (higgsino mass parameter)
 - $m_{\tilde{q}L,3}$ (left- handed top and bottom squarks mass \rightarrow light for naturalness).

SUSY15

• See further details in backup.

Emma Torró

Results on bRPV

• For $m_{\tilde{q}L,3}$ = 800 GeV, entire range of μ excluded.

• Lower limits of μ < 455 GeV and $m_{\tilde{q}L,3}$ > 810 GeV within explored region.

- Strongest constraints set by SR3b in the SS/3L analysis along the entire plane.
- Limit weakens as $m_{\tilde{q}L,3}$ increases due to:
 - Contribution from $\tilde{b_1}$ pair production is critical: large m_{eff} difficult to produce from $\tilde{t_1}$ decays when $\tilde{t_1}$ and $\tilde{\chi}_1^{\pm}$ degenerate
 - Increasing \tilde{b}_1 mass, and corresponding decrease in the $\tilde{b}_1 \tilde{b}_1$ production cross-section.

eμ, eτ, μτ resonances

Heavy resonances

- Aiming RPV combined LLE + LQD terms
- Selection:
 - Trigger on 1 or 2 leptons (e or μ)
 - 0 or 1 τ_{had} candidates with 1 prong
 - Exactly 2 leptons with OSDF
 - Leptons back to back ($\Delta \phi > 2.7$)
 - $m_{||} > 200 \text{ GeV}$ ($m_{||} < 200 \text{ GeV}$ used as VR)
- Main backgrounds:
 - 2 prompt leptons:
 - $Z/\gamma^* \rightarrow \tau\tau$, ttbar, st Wt channel, dibosons
 - → Estimated using MC
 - Jets misidentified as leptons (fakes):
 - W+ jets, multijets
 - Estimated normalizing MC to data in CRs

Good agreement between expected and observed events in VRs and in SRs.

Models: LQD + LLE terms

- Simplified model: tau sneutrino (\tilde{v}_{τ}) LSP decays to $e\mu$, $e\tau$, $\mu\tau$
- In this case RPV couplings are present both at the production and at the decay vertex.
- Only tau sneutrino is considered here in order to compare with previous searches performed at the Tevatron, but...
- The results of this analysis apply to any sneutrino flavour.

Emma Torró

- Theoretical predictions of σ x BR: assuming $\lambda'_{311} = 0.11$ and $\lambda_{311} = 0.07$
- Lower limits on the \tilde{v}_{τ} mass are 2.0 TeV, 1.7 TeV, and 1.7 TeV for eµ, et and µt channels.
- The observed lower mass limits are a factor of 3 4 higher than the best limits from the Tevatron and also more stringent than the previous limits from ATLAS for the same couplings.

Summary

- *R*-parity violation can be a cause of non-discovery in general searches for new physics at LHC.
- A variety of RPV scenarios are tested either by dedicated searches or by reinterpreting previously published ATLAS searches.
- LLE and LQD cases:
 - Limits on production cross-section and sparticle masses obtained for different LSP mass hypotheses as a function of the LSP BRs to bottom quarks and tau leptons.

	LLE	LQD		LLE + LQD
		gg	qq	
Dominant analysis	SS/3L	1L/0L	1L / OL	eμ, eτ _{had} , μτ _{had}
mass limit	m(ĝ) > 1040 – 1400 GeV	m(ĝ) > 910 - 1220 GeV	R > 0.1: m(ĝ) > 910 - 1280 GeV	m(ν̃ _τ) > (2.0, 1.7, 1.7) TeV for (eμ, eτ, μτ)
reinterpretation		n of previous AT	LAS searches	dedicated ATLAS search

- Bilinear *R*-parity violation in natural pMSSM:
 - Reinterpretation of previous ATLAS searches (SS/3L dominant)
 - μ = (160, 455) GeV excluded at 95%CL; $m_{\tilde{q}L,3}$ = 800 GeV excluded up to μ = 560 GeV
 - Limits in natural SUSY with bRPV complement previous studies of mSUGRA model.

Backup

Search method

MC used to optimise signal selection in Signal Regions (SR).

- Searches rely on the understanding of the SM backgrounds:
 - Irreducible bkgs:
 - Dominant sources: Normalise MC to data in
 Control Regions ——> transfer factor.
 Validation regions : transfer factors cross check.
 - Minor sources MC estimation.
 - Reducible bkgs:
 - Fake EtMiss —— data-driven
 - Charge mismeasurement ——> data-driven
 - Fake leptons ——> data-driven

set of variables 1

- Interpretation of results using CLs prescriptions.
 - Discovery fit (look for an excess of data wrt SM estimation; no signal considered)
 - Exclusion fit (limit setting; particular model considered)

Four leptons (4L)

• Aiming RPC and RPV with LLE terms

- Selection:
 - \geq 4 leptons (at least two of them e or μ)
 - Veto on Z->II (orthogonal SRs contain Zs)
 - No jet selection: valid for strong and EW
 - 3 SRs relevant for LLE:

SR name	$N(e/\mu)$	$N(\tau)$	$E_{\rm T}^{\rm miss}$ [GeV] or <i>n</i>	n _{eff} [GeV]
SR0noZb	≥ 4	≥ 0	≥ 75	or	≥ 600
SR1noZb	= 3	≥ 1	≥ 100	or	≥ 400
SR2noZb	= 2	≥ 2	≥ 100	or	≥ 600

- Final result: statistical combination of all considered SRs.
- •Main backgrounds:
 - ttZ, ZZ
 - Estimated from MC
 - Non-prompt and fake leptons
 - Estimated with data driven methods,

checked in VRs

Phys. Rev. D. 90, 052001 (2014)

• Good agreement between expected and observed events in VRs and in SRs.

2 same sign leptons / 3 leptons (SS/3L)

Aiming RPC models where Majorana particle pairs decay

JHEP 06 (2014) 035

• Selection:

semileptonically.

- 2 SS leptons OR 3 leptons
- 3 relevant SRs:

SR	Leptons	N_{b-jets}	Other variables	$m_{\rm eff}$
SR3b	SS or 3L	≥ 3	$N_{\rm jets} \ge 5$	$m_{\rm eff} > 350 \; { m GeV}$
SR1b	SS	≥ 1	$N_{\text{jets}} \ge 3, E_{\text{T}}^{\text{miss}} > 150 \text{ GeV},$	$m_{\rm eff} > 700 \; { m GeV}$
			$m_{\rm T} > 100$ GeV, SR3b veto	
SR3Lhigh	3L	-	$N_{\text{jets}} \ge 4, E_{\text{T}}^{\text{miss}} > 150 \text{ GeV}, \text{SR3b veto}$	$m_{\rm eff} > 400 \; {\rm GeV}$

- Final result: statistical combination of all considered SRs.
- Main backgrounds:
 - Prompt leptons:

ttW, ttZ (dominant in SRb), WW, WZ, ZZ + jets

- (dominant in SRL)
- Estimated from MC
- Fake leptons, charge-flip
- -> Estimated with data-driven method

GeV ATLAS Events / 655 SM Tot L dt = 20.3 fb⁻¹, √s = 8 TeV Fake lepton Ton + X Dibocon - Triboco a-a productio $t \rightarrow \tilde{t}, t, \tilde{t}, \rightarrow bs$ (BPV $(\tilde{a}, \tilde{t}) = (945, 417)$ GeV 200 400 600 800 1000 1200 1400 m_" [GeV]

• Good agreement between expected and observed events in SRs. 22

SUSY15

One lepton (1L)

• Aiming a wide variety of models (mSUGRA bRPV among them) with 1L or 2L OS. Here only 1L.

- Selection:
 - 1L + jets
 - 3 relevant SRs:

	3-jet	5-jet	6-jet
N _{lep}	= 1	= 1	= 1
$p_{\rm T}^{\rm lep1}$ [GeV]	> 25	> 25	> 25
$p_{\rm T}^{\rm lep2}$ [GeV]	< 10	< 10	< 10
Njet	≥ 3	≥ 5	≥ 6
$p_{\rm T}^{\rm jet}$ [GeV]	> 80, 80, 30	> 80, 50, 40, 40, 40	> 80, 50, 40, 40, 40, 40, 40
•	$p_{\rm T}$ ^{5th jet} < 40 GeV	$p_{\rm T}$ ^{6th jet} < 40 GeV	
$E_{\rm T}^{\rm miss}$ [GeV]	> 300	> 300	> 250
$m_{\rm T}$ [GeV]	> 150	> 150	> 150
$E_{\rm T}^{\rm miss}/m_{\rm eff}^{\rm excl}$	> 0.3	-	-
$m_{\rm eff}^{\rm incl}$ [GeV]	> 800	> 800	> 600

• Good agreement between expected and observed events in SRs.

- Main backgrounds:
 - ttbar and W+jets
 - → MC normalized to data in CRs with lower met, mT cuts

SUSY15

Extrapolation to SRs tested in VRs

Lake Tahoe, 28 Aug. 2015

0 leptons + 2-6 jets (0L + 2-6 jets)

- Aiming a variety of RPC with no leptons in the final state
- Selection:
 - no isolated leptons

Emma Torró

• 4 relevant SR with diff. jet multiplicity :

>=5 jets with pT>60 GeV, at least one jet with pt>160 GeV

SUSY15

JHEP 09 (2014) 176

Lake Tahoe, 28 Aug. 2015

0 leptons + 7-10 jets (0L + 7-10 jets) J. High Energy Phys. 10 (2013) 130

SUSY15

- Aiming RPC models and RPV with BNV
- Selection:
 - No isolated leptons
 - 13 relevant SRs with different jet and b-jet multiplicity:

	j50			j80		
	8j50	9j50	$\geq 10j50$	7j80	≥ 8j80	
Jet $ \eta $		< 2.0		< 2	2.0	
Jet $p_{\rm T}$		> 50 GeV		> 80	GeV	
N _{jet}	= 8	= 9	≥ 10	= 7	≥ 8	
<i>b</i> -jets	$0, 1, \ge 2$	$0, 1, \ge 2$	—	$0, 1, \ge 2$	$0, 1, \ge 2$	
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{\mathrm{T}}}$		$\geq 4 \text{ GeV}^{1/2}$		$\geq 4 \text{ G}$	eV ^{1/2}	

- Main backgrounds:
 - multijets
 - Estimated using matrix method
 - ttbar and W+jets
 - →Normalize MC to data in 1 CR per SR
 - Z+jets, ttV, st
 - →Estimated using MC

Emma Torró

B-L analysis description

- Impose a $U(1)_{B-L}$ symmetry to the SM with right-handed neutrinos
- Symmetry is spontaneously broken by right-handed sneutrino vev
- Simplified model with stop (LSP) pair production

• Selection:

- 2 OS leptons (e, μ) + 2 bjets (no E_T^{miss} cut!) + Z veto
- \bullet Check $m_{\rm bl}$ asymmetry for all possible combinations of bl
- Take the combination with smallest m_{bl} asymmetry
- Two SRs defined for high sensitivity to different stop masses

Region	$m_{b\ell}^0$ [GeV]	$H_{\rm T}[{\rm GeV}]$	$m_{b\ell}$ asymmetry	Z window
SR 400	≥ 400	≥ 1100	≤ 0.2	Veto
SR 600	≥ 600	≥ 1100	≤ 0.2	Veto

• Signal: small m_{bl}

ATLAS-CONF-2015-015

B-L analysis results

- Main backgrounds:
 - ttbar and Z+jets
 - → Normalize MC to data in CRs
 - others
 - → Estimated using MC
- Good agreement between data and SM expectations in all VRs and SRs

$\frac{\text{ATLAS-CONF-2015-015}}{\tilde{t} \quad \lambda' \quad \ell^+}$

b

Further results on LLE

ATLAS-CONF-2015-018

[GeV]

Exclusion

served Mass

1200

1180

1160

1140

1120

1100

BR(τ)

1080 0

Further results on LQD gluino

Emma Torró

SUSY15

Lake Tahoe, 28 Aug. 2015

0.5

29

BR(τ)

Further results on LQD squark

Lake Tahoe, 28 Aug. 2015

Exploring bRPV in pMSSM

• Complex phenomenology, discussed for the first time in <u>RPV summary paper: ATLAS-CONF-2015-018</u> • $m(\tilde{t}, \tilde{b})$ vary with $m_{\alpha L,3}$, almost independent of μ .

- $\widetilde{\chi}^0_{l,2}$ and $\widetilde{\chi}^{\pm}_{l}$ masses increase with μ .
 - μ >570 GeV \rightarrow LPS = stop1.
 - Different phenomenology, not considered here

neutr, chi masses increase

Exploring bRPV in pMSSM

• $\tilde{t}_1 \rightarrow b \tilde{\chi}_{1,2}^{\pm}$ kinematically accessible to avoid discontinuities in the sparticle decay patterns

Exploring bRPV in pMSSM

•Search channels requiring at least one lepton are used to constrain the natural *b*RPV model. • The lepton requirement is motivated by the high branching ratios of the χ_1^0 and χ_1^{\pm} to leptons, together with the possibility of additional leptons from RPC SUSY cascades.

L1 search: too tight met cut → low sensitivity BUT
since neutralino LSP is majorana→ two LSP can decay to SS leptons

- Sparticle decays determined by bRPV params ε.
- RPV can happen before LPS decay

