

1

Searches for squarks and gluinos in two lepton final states with the ATLAS detector

Kurt Brendlinger

On behalf of the ATLAS Collaboration

K. Brendlinger

- SUSY searches for squark/gluino final states are very attractive
 - High production cross section \rightarrow good discovery potential with smaller amount of data
- ATLAS has a broad inclusive squark/gluino search strategy
 - 0L, 2-6 jets; 0L, ≥7 jets; 1L+jets; SS dilepton, ...
- 2L searches presented here
 - · 2L Razor analysis (http://arxiv.org/abs/1501.03555 Jan 2015, JHEP)
 - · Z+MET and dilepton edge analyses (http://arxiv.org/abs/1503.03290 Mar 2015, Eur. Phys. J. C)
- Probe simplified models with 2-step decays; gauge mediated supersymmetrybreaking models (GMSB), mUED models

2L Razor Search

K. Brendlinger

Searches for squarks and gluinos in two lepton final states

3

2L Razor - Models, Signal Region

Pennsylvania **F**

- 1. Test simplified models
 - "Two-step" decays via intermediate sleptons/sneutrinos
 - Assume mass-degenerate sleptons/sneutrinos; mass-degenerate $\tilde{\chi}_1^{\pm}, \, \tilde{\chi}_2^0$
- Test Minimal Universal Extra Dimensions (mUED) models
 - Combine 2L search with a search using 2 soft muons
 - Parameters: Compactification radius R_C , cutoff scale Λ , $m_h=125$ GeV

Signal Region Highlights

- Define 2 types of signal region:
 - "Low-multiplicity" of jets ≤2 jets
 - "High-multiplicity" of jets ≥3 jets
- ==2 or \geq 2 leptons, depending on the model in question
- Veto events with b-tagged jets to suppress ttbar bkg
- Veto leptons with $81 < m_{ll} < 101$ GeV consistent with a Z-boson
- Define jets as having $p_T > 50 \text{ GeV}$
- Main discriminating variables: Razor Variables (next slide)

2L Razor Background Estimation

Bkg	<=2 jet SR Contribution	≥3 jet SR Contribution	Est. Method	
ttbar	30-40%	50%	Control Region	
Diboson	30-40%	10-15%	MC	
W+jet/ttbar fakes	<10%	10-15%	Matrix Method	
Z+jets	10-20% 10-1		Control Region	
t,tV,ttV,ttVV	<10%	10-15%	MC	

*from single-binned ee/ $\mu\mu$ post-fit results

- Backgrounds from Z+jets, ttbar constrained in control regions
 - Top CRs/VRs require a b-tag in right plot
 - · Z CRs/VRs have b-veto in right plot
- Fake leptons from W+jet/ttbar evaluated using Matrix Method
- Diboson, other top backgrounds taken from MC simulation
- Global fit of CRs using profile likelihood method
- Background fits cross-checked in validation regions

Interpretation and Limit Setting

Pennsylvania

- Limits on two-step gluino/squark simplified model with sleptons
 - gluino(squark)-LSP plane
- Combining with statisticallyindependent 1-Lepton channel increases sensitivity (gluinos)
- Also set limits on mUED model
- Results from 2L Razor and a soft dimuon channel
 - Each point taken from better expected limit of the two analyses (overlapping signal regions)

p

Z+MET, 2L Edge

K. Brendlinger

Searches for squarks and gluinos in two lepton final states

9

2L Z+MET / Edge analysis Overview

Pennsylvania **F**

- "On-Z" (Z+MET) targets generalized gaugemediated SUSY-breaking model (GGM)
 - gravitino (G) LSP
 - Two values of tanβ used to vary χ⁰₁→ZG branching ratio (tanβ=1.5, 30)
- "Off-Z" (Edge) targets simplified model:
 - "Two-step" decays via intermediate sleptons/sneutrinos
 - Same mass hierarchy as in 2L Razor case
 - Leptons from $\tilde{\chi}_2^0$ have a characteristic kinematic edge in m_{ll}
 - Look for an edge above or below the Z-peak

0

 ℓ/ν

kinematic edge $m_{\text{max}} \approx m(\tilde{\chi}_2^0) - m(\tilde{\chi}_1^0)$

Signal Regions

On-Z SR Highlights

- Require a 81<m_{ll}<101 GeV SF dilepton pair
- Require large E_{TMiss} and H_{T}
 - E_{TMiss} > 225 GeV
 - $H_T > 600 \text{ GeV}$
 - H_T includes p_T of all jets plus 2 leading leptons
- njets ≥ 2
- No b-jet requirement
- Additional requirement on $\Delta \phi(\text{jet}_{1,2}, E_{\mathrm{T}}^{\mathrm{miss}})$ to suppress fake MET from mismeasured jets

```
 \cdot \Delta \phi(\text{jet}_{1,2}, E_{\text{T}}^{\text{miss}}) > 0.4
```

Off-Z SR Highlights

- Exclude 80<m_{ll}<110 GeV SF dilepton pairs
- Require E_{TMiss}>200 GeV
- Split into jet multiplicity / btag regions:
 - · Bins of 2-jets, 4-jets
 - Bins of b-tag, b-veto
 - 4 jet-binned regions total
- Additional "Loose" regions:
 - · 2 jets, E_{TMiss}>150 GeV
 - >2 jets, E_{TMiss}>100 GeV
 - No b-tag requirements
 - Developed to match CMS search with excess (<u>http://arxiv.org/abs/1502.06031</u>)
- Raise lepton thresholds wrt On-Z analysis: p_{T,leps}>20 GeV
 - $\cdot\,$ Also raise dilepton mass threshold to 20 GeV

Bkg	On-Ζ ee+μμ	Off-Z ee+μμ SR-4j-bveto*	Est. Method			
 flavor-symmetric (ttbar)	50-60%	>90%	eµ control regions			
 Z+jets	<1%	<5%	jet-smearing (On-Z), CR (off-Z)			
Rare top	<5%	<2%	MC			
Diboson	20-30%	<2%	MC			
Fake leptons	10-20%	<2%	Matrix Method			

*Similar fractions for other Off-Z SRs

- Largest contribution from flavor-symmetric background
 - eµ Control Region estimates this background
- Also want to make sure Z+jets background is controlled

Z+fake MET background

- On-Z:
 - Largest concern is overestimated E_{TMiss} from mismeasured jets
 - Use jet smearing response functions (p_T and ϕ) that have been *tuned to data*
 - Using Z+jets from a "seed" region, apply jet response function and recalculate E_{TMiss}
 - Normalize this "pseudo-data" in low-E_{TMiss} part of VRZ Validation Regions
 - Result: SM Z+MET is negligible in SR:

Signal region	Jet-smearing	Z+jets MC
SR-Z ee SR-Z μμ	$\begin{array}{c} 0.05 \pm 0.04 \\ 0.02 \substack{+0.03 \\ -0.02} \end{array}$	0.05 ± 0.03 0.09 ± 0.05

- Off-Z:
 - Shape templates in region excluding Z-peak window taken from MC
 - Normalized using Z-peak CR, 80<m_{ll}<110 GeV

Flavor-symmetric background (ttbar)

 On-Z: Estimated in eµ control region, extrapolated to ee/µµ signal regions with some correction factors:

- Method using m₁₁ sideband fit result yields compatible results
- Off-Z: Process repeated for *i* m₁₁ bins, with a shape correction derived in ttbar MC:

$$N_{ee}^{\text{est}}(i) = \frac{1}{2} N_{e\mu}^{\text{data,corr}}(i) k_{ee} \alpha S_{ee}(i)$$

Result checked in flavor-symmetric dominated validation region (right)

On-Z Cross-check				
Signal region	Flavour-symmetry	Sideband fit		
SR-Z ee	2.8 ± 1.4	4.9 ± 1.5		
SR-Z $\mu\mu$	3.3 ± 1.6	5.3 ± 1.9		

Off-Z VR (ee)

^{3 fb⁻¹ Flavour-symmetric On-ZoAnalysis: Results+jets}

- Good agreement in validation regions
- Excesses in both ee and $\mu\mu$ signal regions
 - Corresponds 3.0 σ (ee), 1.7 σ (µµ) deviations

Pennsylvania **F**

On-Z: Interpretation and Limit Setting

- Limits on gauge-mediated SB model
 - Dominant production mode is via gluino pair production
 - LSP is gravitino; $\tilde{\chi}_1^0$ is higgsino
 - Gravitino mass set sufficiently low such that NLSP decays are ~prompt (<2 mm, smaller for large values of µ parameter)
- Limits weak due to excess!

Results: off-Z

- No significant excesses in SRs
- Do not confirm SR-loose excess seen by CMS (2.6σ)

K. Brendlinger

Off-Z Analysis: Interpretation and Limit Setting

- Set limits on squark/gluino pair production models
 - Focus on b-veto signal regions for limit setting (better sensitivity / less ttbar bkg)
- 2j-bveto:
 - Must choose a m_{11} window to set limit
 - Binning sets 45 possible windows
 - 10 windows with best expected sensitivity provide coverage of signal grid
 - Full exclusion limit obtained by taking best window at each signal grid point
- 4j-bveto:
 - + 21 possible m_{11} windows, of which 9 chosen

Conclusions and Run II Prospects

• 2L Razor

- Results consistent with SM expectations
- Limits placed on squark/gluino production and decay via intermediate sleptons/sneutrinos

• 2L Z+MET

- Excess in ee and μμ channels (3.0σ)
- Limits placed on GMSB models

• 2L Edge

- Non-resonant edge analysis sees no deviation from SM expectation
- No confirmation of CMS excess

Run II Prospects

- Production cross sections increase drastically for regions of squark/gluino pair production phase space
 - 1350 GeV gluino: 26x higher cross section at \sqrt{s} =13 TeV vs 8 TeV
 - · 1500 GeV gluino: 36x higher
- Work is progressing in earnest to prepare 13 TeV analyses
- Looking forward to revisiting intriguing excesses and extending our reach!

Searches for squarks and gluinos in two lepton final states

SUSY?

BACKUP

K. Brendlinger

Searches for squarks and gluinos in two lepton final states

20

2L Razor

2L Razor

Relative systematic uncertainties (%)

	Low-mi	Binned has a litiplicity (≤ 2 -jet)	ard dilepton 3-je	d dilepton 3-jet		
	$ee/\mu\mu$	$e\mu$	$ee/\mu\mu$	$e\mu$		
Total systematic uncertainty	11	11	23	18		
b-tagging	7	6	11	11		
JES (in-situ measurement)	_	—	—	5		
Fake leptons	5	_		_		
MC statistics	6	- 🛄 🌮				

Agreement in validation regions, comparing to post-fit background estimates

2L Control and Validation Regions

Z+MET, Edge

K. Brendlinger

Searches for squarks and gluinos in two lepton final states

23

SR on-Z Distributions - 2e

K. Brendlinger

SR on-Z Distributions - 2μ

K. Brendlinger

2L Z+MET Event Display

• Event display showing a 2e pair consistent with a Z boson, large E_{TMiss} and large large H_T

2L Z+MET Event Display

• Event display showing a 2μ pair consistent with a Z boson, large E_{TMiss} and large H_T

Relative systematic uncertainties (% of total bkg expectation)

Source		Relative systematic uncertainty [%]				
	SR-Z	SR-loose	SR-2j-bveto	SR-2j-btag	SR-4j-bveto	SR-4j-btag
Total systematic uncertainty	29	7.1	13	9.3	30	15
Flavour-symmetry statistical	24	1.7	9.3	6.2	23	12
Flavour-symmetry systematic	4	5.7	6.7	5.9	11	6.6
Z/γ^* + jets	-	2.1	6.3	3.5	14	7.0
Fake lepton	14	3.2	1.4	1.2	1.8	2.2
WZ MC + parton shower	7	-	-	-	-	-

On-Z Cross-check (sideband) / VRs

K. Brendlinger

Off-Z - SR-2j-btag

Searches for squarks and gluinos in two lepton final states

29