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Motivations

The discovery of a light SM-like Higgs sharpens the hierarchy problem : we haven’t found
any particles protecting its mass.

So, where is natural SUSY hidden?

With no signs of prompt SUSY, natural physics could still be present, but hidden in exotic
and non-standard signatures.

that include heavy particles with large enough lifetimes to allow them to travel
measurable distances before decaying. Some of these are Heavy lonising Particles (HIPs),
Hidden Sectors, R-Parity violating decays, Split-SUSY, AMSB, GMSB.

In such models, the LLP have suppressed decays due to:

Small couplings, highly off-shell virtual propagators, very small mass differences in the
decay chain or approximately conserved quantum numbers.



Models And Long Lived Particle Signatures

Late decaying Split-SUSY, Hidden Valley -
Split-SUSY, GMSB, Stealth

low p, large dE/dx SUSY, HIPs, AMSB > 1000
DR Ly AMSB 0(100-1000)
Tracks
Non-pointing y GMSB 0(100-1000)
Displaced Vertex Split-SUSY, RPV SUSY, 0(10-100) S

GMSB, Hidden Valley

Different lifetimes/charge/
velocity/decays give rise
to different detector
signatures that

require special triggers,
reconstruction and/or
simulation.
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Metastable heavy charged particles

rR = 1082 mm

Searches for heavy, slow (3<1) highly ionising <
charged particles.

LR= mm \J
dE/dx on the Pixel as only discriminating ‘=14 mm
variable, extending sensitivity to low lifetimes e
O(-ns), e

Interpretations in the context of SUSY models
with gluino R-hadrons and charginos in AMSB.
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Metastable Gluinos

First search for gluinos with intermediate lifetimes 0

O(~ps-ns). ATLAS
searches.

of prompt

Motivated in the context of (mini) Split-SUSY
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- decrease in jet multiplicity for lifetimes longer than O(10 ns) (as gluino decays in or

outside the calorimeter )

- decrease in signal acceptance as lifetime increases (prompt searches had standard

quality cuts rejecting non-prompt jets)
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Disappearing Tracks Phys. Rev. D 88, 112006 (2013)

Long-lived chargino (~0.2ns) decays to a neutralino and soft pion in AMSB.

~0, .+
X1 — X1 | | |
>oft particle - track

Disappearing Track not reconstructed

Chargino is reconstructed as a high pT disappearing
track. The pion is not reconstructed, since is emitted
softly. PV

Analysis strategy tang = 5, u>0
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Disappearing track pT as discriminant
variable.

Look for high pT isolated tracks having
few associated hits in the outermost part of
the inner detector (TRT).

Dedicated tracking reconstruction that
uses seeds only from the Pixel to improve 1
efficiency for short tracks.
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Displaced Vertices

We look for long-lived particles decaying inside the Inner
Detector.

Physics model interpretations include Split-SUSY, GMSB,
different RPV couplings.

> Multi-track DV+n, DV+e, DV+jets and DV+ETmiss
- Displaced dileptons: ee,ep,ppn
- First displaced dileptons search in ATLAS.
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Analysis strategy
- Standard ATLAS tracking algorithms are re-run

with looser cuts to gain efficiency for high-dO
tracks.

- Veto vertices in material layers (dominantly

background vertices) with a 3D material map.

- High-mass, high-track multiplicity vertices with

mass>10 GeV and at least 5 tracks (or at least 2
leptons).

No events observed in any signal region.
Limits on Split-SUSY, RPV and GGM models.
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Status after Run 1

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults
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https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

Status after Run 1 (2)

Many new long lived results came out in 2015. Wide interest from the community in
recasting long lived results! Some examples are,

“Closing in on the Tip of the CMSSM Stau Coannihilation Strip”
Disappearing track analysis reinterpretation.

Desai, Ellis et al http://arxiv.org/abs/1404.5061

“The Fate of Long-Lived Superparticles with Hadronic Decays

Liu and Tweedie http://arxiv.org/abs/1503.05923 after LHC Run 1”
ATLAS and CMS reinterpretations of various long-lived/

displaced analysis.

“Probing Baryogenesis with Displaced Vertices at the LHC”
ATLAS DV+muon and CMS displaced dijets reinterpretation.

Cui ans Shuve http://arxiv.org/abs/1409.6729

“Phenomenology of a Long-Lived LSP with R-Parity Violation”

Csaki et al http://arxiv.org/abs/1505.00784 ATLAS and CMS reinterpretations of various long-lived/
— — displaced analysis, including full recast of ATLAS DV+jets.

... and more to come !

Naturalness ?
Interplay between collider physics and

dark matter/cosmology ?
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Summary

- Searches for massive, long lived particles are an important part of the ATLAS program
of searches for new physics.

> Long lived analysis are non standard and very challenging, even more for Run 2.
There is good coverage of different lifetimes and models by complementary analyses
at the LHC.

- With no sign of prompt SUSY, long lived analysis become VERY relevant and
complementary to constrain new models and testing new theories !

ATLAS
Stmulatiop” -~
Prelimmary”
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Backup Slides
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Status after Run 1 (3)
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- LLPs are predicted by a wide variety of models : Hidden Sectors, RPV violating decays,
Split-SUSY, AMSB, GMSB, etc.

- LLP have interesting and non-standard decay signatures. These may have been
overlooked or misidentified by searches not dedicated to LLPs.

- All our signatures can come from strong production (biggest gain from higher energies).

- We should keep looking for new physics everywhere and every way we can!

- Extend Run 1 analysis with new methods and using ' ‘ *\\\\\\ \ 4// ,
new capabilities of the detector! = E y

- Make sure triggers are in place for our signals.

- Make sure we have software selections in place
(DESD) for our Run2 analyses.

- Make sure we can use new data formats (xAOD).
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Displaced Vertices
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- . \ 1
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q h l b q
q {/v
R-parity violation allows for the decay of the neutralino Neutralino decay in a GMSB scenario Split SUSY model with heavy scalars. The
through different lambda and lambda’ couplings. where the Gravitino is the LSP. gluino is long-lived and forms an R-hadron
before decaying.
? As AL A e B 5 4
.. t ) trl 100 GeV (F) 5 . 4
62 A L Q Dc + AabcL L RC agp— 10_2 —— . 11 lTeV 7n"l
J[ abc™a*b a0 ' m; 100 Tev ) ™ ¢a=10 m; (109 GeV) e
- 1 o 1/2R lifetimes of ~ picoseconds to a nanosecond
Channel No. of background vertices (x107?)
Main sources of backgrounds (after material veto): D\",ﬂm - L0 S §SS 60
. , . DV + Emiss 109402+ 1.5
> Multitrack: Low mass DV’s (from hadronic DV +-muon 154+01+02
interactions with gas molecules) that are crossed DV -telectron 207 4+ 9 + 29

by an unrelated high-pT track at a large angle,
making their reconstructed mass seem high.

- Di-lepton: Two unrelated leptons crossing close Channel | No. of background vertices (x1077)
enough for the vertexing method to combine. ete” 1.0 £0.2 f?)fé
Backgrounds are really small ! e* ¥ 2.4+£0.9 93
ptp~ 2.04+£0.5 flfi
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Displaced Vertices arXiv:1504.05162 , submitted to PRD

Dedicated DV trigger studies. Maybe use FTK. Otherwise, we
will keep using multi-jet, met and lepton triggers.
Improvement in vertexing: Expand fiducial volume, study of
other selections.

New material map.

Re-tracking including IBL, higher pileup.

More physics models!
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Stable Massive Particles JHEP Ol (R015) 068

arXiv:1506.05332 , submitted to EPJ C

Particles with lifetimes >~ns could traverse the detector. Candidate particles include
long-lived slelptons in GMSB models and R-hadrons.

If massive, then they will be produced with p<I1

Mass measurements ( m=%; ) depends on the interaction with ID, calorimeters and muon
spectrometer (where we can measure time of flight and p).

dE
Can also measure energy loss -~ , related to gy -

Signal models: Stable and metastable (10-0.001 ns) squarks and gluino R-hadrons. Stable
and metastable (1-0.3 ns) charginos.

R-hadrons can interact with material and even flip charge. If they are too slow, they may
be associated with the following bunch crossing by the time it gets to the muon
spectrometer. Muon trigger efficiency can be low.

- Trigger strategy to look for met in one bunch crossing
and a high p'T' muon in the next one.

- Improvement on observables: Time correction, include
IBL in pixel & : New definition and calibration (Bethe-
Bloch) needed.

- FTK trigger could select events with high pT isolation
and tracks with ilZE_x' Acceptance increases!
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Disappearing Tracks Phys. Rev. D 88, 112006 (2013)

- Trigger on met back-to-back with high-pT jet

- Possibly use FTK in 20186.

- Tracking with IBL. Can use shorter tracks
(charginos decaying within ~ 130 mm <R< 300
mm). Signal acceptance improves!

7 3 . . ~0, +
X1~ decaying into X 4+

Badly mismeasured in p, due to a wrong
P combination ol space-points

High-p, charged hadron
intcracting with ID matcrial

Lepton [ailing to satisly
identification criteria due to
" large bremsstrahlung or scattering

reconstructed track
true particle track

Pixel SCT TRT
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Delayed/Non-pointing Photons Phys. Rev. D. 90, 112005 (2014)

Non-prompt photon search performed in the context of

GMSB. Long-lived X NLSP has finite lifetime (250 ps),
producing distinctive signature.

xR
=T

Uses LAr pointing angle and timing as key variables.

Trigger choice for will affect the analysis!

- Continue with a “loose” diphoton trigger.

- Change analysis to single “photon+met” trigger

- Use a dedicated timing trigger : Will need rates study, timing selection. Perhaps not
suitable.

Also need to do LAr timing calibration for the new data period.

Results are interpreted in specific SPS8 benchmark model of GMSB. Possibility for a
more general “displaced photon” search?
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Stopped R-hadrons Phys. Rev. D. 88, 112003 (2013)

Long-lived R-hadron stops in the calorimeter. Detect decay to jets in “empty”
bunch crossing (many bunch crossings later)

Analysis sensitivity is really determined by
“live-time" (how long to record data in absence
of collisions). Could improve quickly in Run2!

(just by occasionally taking data between LHC
fills)

- Make sure all needed triggers are in place.
- Move to Pythia8 in Rhadron simulation.
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