The effect of ATLAS Run-1 supersymmetric searches in the pMSSM

Based on the paper "Summary of the ATLAS experiment's sensitivity to supersymmetry after LHC Run 1 — interpreted in the phenomenological MSSM". <u>arXiv:1508.06608</u>

SUSY with ATLAS Run 1

- ATLAS has a very wide range of SUSY searches, but usually uses simplified models (<u>ATLAS SUSY Results</u>)
- MSSM has 105 free parameters. Would like to use these searches to explore large part of it

A	TLAS SUSY Se	arches	s* - 95	5% (CL Lo	wer Limits ATL	4S _Preliminar
Sta	atus: July 2015 Model	e, μ, τ, γ	Jets	$E_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	¹] Mass limit $\sqrt{s} = 7 \text{ TeV}$ $\sqrt{s} = 8 \text{ TeV}$	$\sqrt{s} = 7, 8$ TeV Reference
Inclusive Searches	$ \begin{array}{l} \text{MSUGRA/CMSSM} \\ \bar{q}\bar{q}, \bar{q} \rightarrow \bar{q} \tilde{\chi}_{1}^{0} \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \text{compressed} \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \text{compressed} \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{g}, \bar{q} \rightarrow q \bar{q} \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q \bar{q} \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q q \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q q \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{g}\bar{g}, \bar{g} \rightarrow q q \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{g}\bar{g}\bar{g}\bar{g}\bar{g}\bar{g}\bar{g}\bar{g}\bar{g}$	$\begin{array}{c} 0\text{-3}\ e,\mu/1\text{-2}\ \tau\\ 0\\ \text{mono-jet}\\ 2\ e,\mu\ (\text{off-}Z)\\ 0\\ 0\text{-1}\ e,\mu\\ 2\ e,\mu\\ 1\text{-2}\ \tau+0\text{-1}\ \ell\\ 2\ \gamma\\ \gamma\\ \gamma\\ 2\ e,\mu\ (Z)\\ 0 \end{array}$	2-10 jets/3 2-6 jets 2-6 jets 2-6 jets 2-6 jets 2-6 jets 0-3 jets 0-2 jets 2 jets 2 jets 2 jets mono-jet	b Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20 20 20 20.3 20.3 2	φ.č. 1.8 TeV (m(i)-m(i) φ.č. 850 GeV m(i)-m(i) m(i) m(i)-m(i) m(i) m(i)	1507.05525 1405.7875 1507.05525 1503.03290 1405.7875 1507.05425 1407.0643 1507.05433 1507.05433 1507.05433 1507.05433 1507.05433 1507.05433
3 rd gen. ẽ med.	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow b \tilde{b} \tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow b \tilde{t} \tilde{\chi}_{1}^{1}$	0 0-1 e,μ 0-1 e,μ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	8 1.25 TeV m(l ²)<400 GeV 8 1.1 TeV m(l ²)<450 GeV 8 1.34 TeV m(l ²)<400 GeV 8 1.34 TeV m(l ²)<400 GeV	1407.0600 1308.1841 1407.0600 1407.0600
3 rd gen. squarks direct production	$ \begin{split} & \tilde{b}_{1} \tilde{b}_{1}, \tilde{b}_{1} \rightarrow b \tilde{x}_{1}^{0} \\ & \tilde{b}_{1} \tilde{b}_{1}, \tilde{b}_{1} \rightarrow b \tilde{x}_{1}^{0} \\ & \tilde{t}_{1} \tilde{c}_{1}, \tilde{t}_{1} \rightarrow b \tilde{x}_{1}^{0} \\ & \tilde{t}_{1} \tilde{c}_{1}, \tilde{t}_{1} \rightarrow b \tilde{k}_{1}^{0} \text{ or } t \tilde{x}_{1}^{0} \\ & \tilde{t}_{1} \tilde{t}_{1}, \tilde{t}_{1} \rightarrow b \tilde{x}_{1}^{0} \\ & \tilde{t}_{1} \tilde{t}_{1}, \tilde{t}_{1} \rightarrow b \tilde{x}_{1}^{0} \\ & \tilde{t}_{1} \tilde{t}_{1} (n \text{tattard GMSB}) \\ & \tilde{t}_{2} \tilde{t}_{2}, \tilde{t}_{2} \rightarrow \tilde{t}_{1} + Z \end{split} $	0 2 e, μ (SS) 1-2 e, μ 0-2 e, μ (0 n 2 e, μ (Z) 3 e, μ (Z)	2 b 0-3 b 1-2 b 0-2 jets/1-2 nono-jet/c-ta 1 b 1 b	Yes Yes Yes b Yes ag Yes Yes Yes	20.1 20.3 4.7/20.3 20.3 20.3 20.3 20.3 20.3	År 100-620 GeV m(t ² ₁)<-90 GeV År 275-440 GeV m(t ² ₁)<-90 GeV	1308.2631 1404.2500 1209.2102,1407.0583 1506.08616 1407.0608 1403.5222 1403.5222
EW direct	$ \begin{split} \tilde{\ell}_{L,R} \tilde{\ell}_{L,R_1} \left(\vec{\lambda} \rightarrow \tilde{\mathcal{K}}_1^0 \right) \\ \tilde{k}_1^+ \tilde{k}_1^ \tilde{k}_V(\tilde{r}) \\ \tilde{k}_1^+ \tilde{k}_1^- , \tilde{k}_1^+ \rightarrow \tilde{\ell}_V(\tilde{r}) \\ \tilde{k}_1^+ \tilde{k}_2^ \tilde{k}_1 \cdot \tilde{k}_1^+ (\tilde{r}^{\nu}), \ell \tilde{r} \tilde{\ell}_1 \ell(\tilde{r}^{\nu}) \\ \tilde{k}_1^+ \tilde{k}_2^0 \rightarrow W \tilde{k}_1^0 Z \tilde{k}_1^0 \\ \tilde{k}_1^- \tilde{k}_2^0 \rightarrow W \tilde{k}_1^0 X \tilde{k}_1^0 \\ \tilde{k}_2 \tilde{k}_1^0 , \tilde{k}_2^0 \rightarrow \tilde{k}_R \ell \\ GGM (wino NLSP) weak prod. \end{split} $	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 - 3 \ e, \mu \\ 2 - 3 \ e, \mu \\ 4 \ e, \mu \\ 1 \ e, \mu + \gamma \end{array}$	0 0 0-2 jets 0-2 b 0 -	Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	ž 90-325 GeV m(ℓ ² ₁)→CGV k ¹ ₁ 140-465 GeV m(ℓ ² ₁)→CGV m(ℓ ² ₁)→CGV m(ℓ ² ₁)→CGV m(ℓ ² ₁)→CGV k ¹ ₁ 100-350 GeV m(ℓ ² ₁)→CGV m(ℓ ² ₁)→CGV k ² ₁ , k ² ₂ 700 GeV m(ℓ ² ₁)→CGV m(ℓ ² ₁)→CGV k ² ₁ , k ² ₂ 420 GeV m(ℓ ² ₁)→m(ℓ ² ₂), m(ℓ ² ₁)→CSV m(ℓ ² ₁)→m(ℓ ² ₂), m(ℓ ² ₁)→GSS k ² ₁ , k ² ₂ 250 GeV m(ℓ ² ₁)→m(ℓ ² ₂), m(ℓ ² ₁)→GSS, m(ℓ ² ₁)→GSS m(ℓ ² ₂)→m(ℓ ² ₂), m(ℓ ² ₁)→GSS k ² ₂ 620 GeV m(ℓ ² ₂)→m(ℓ ² ₂), m(ℓ ² ₁)→GSS m(ℓ ² ₂)→m(ℓ ² ₁)	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294,1402.7029 1501.07110 1405.5086 1507.05493
Long-lived particles	Direct $\tilde{\chi}_1^{\dagger}\tilde{\chi}_1^{\circ}$ prod., long-lived $\tilde{\chi}_1^{\dagger}$ Direct $\tilde{\chi}_1^{\dagger}\tilde{\chi}_1^{\circ}$ prod., long-lived $\tilde{\chi}_1^{\circ}$ Stable, stopped \tilde{g} R-hadron Stable \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^{\circ} \rightarrow \tilde{\tau}(\tilde{c}, \tilde{\mu}) + \tau \tilde{c}$ GMSB, $\tilde{\chi}_1^{\circ} - \gamma \tilde{C}$, long-lived $\tilde{\chi}_1^{\circ}$ $\tilde{g}\tilde{g}, \tilde{\chi}_1^{\circ} - eev/quv/\mu\muv$ GGM $\tilde{g}\tilde{g}, \tilde{\chi}_1^{\circ} - eZ\tilde{G}$	bisapp. trk dE/dx trk 0 trk e, μ) 1-2 μ 2 γ displ. $ee/e\mu/\mu$ displ. vtx + je	1 jet - 1-5 jets - - - τ ts -	Yes Yes - - Yes - -	20.3 18.4 27.9 19.1 19.1 20.3 20.3 20.3	ki 270 GeV m(k ² ₁)·m(k ² ₁)-160 MeV, r(k ² ₁)=0.2 ns ki 482 GeV m(k ² ₁)·m(k ² ₁)-160 MeV, r(k ² ₁)=15 ns ki 832 GeV m(k ² ₁)·m(k ² ₁)-160 MeV, r(k ² ₁)=15 ns ki 537 GeV 1.27 TeV V 0-tangk-50 2 <r(k<sup>2₁)/-3 ns, SPS8 model ki 435 GeV 2<r(k<sup>2₁)/-3 ns, SPS8 model ki 1.0 TeV 7 <cr(k<sup>2₁)/-3 nom, m(k²)-1.3 TeV</cr(k<sup></r(k<sup></r(k<sup>	1310.3675 1506.05332 1310.6584 1411.6795 1411.6795 1409.5542 1504.05162 1504.05162
RPV	$ \begin{array}{c} LFV pp \rightarrow \overline{v}, r + X, \overline{v}, \neg e \mu / e \tau / \mu \tau \\ Bilinear \ RPV \ CMSSM \\ \overline{x}_1^* \overline{x}_1, \overline{x}_1^* \rightarrow W \overline{x}_1^* \overline{x}_1^*) \\ \overline{x}_1^* \overline{x}_1, \overline{x}_1^* \rightarrow W \overline{x}_1^* \overline{x}_1^*) \\ \overline{x}_2^* \overline{x}_1^* \overline{x}_1^* \rightarrow W \overline{x}_1^* \overline{x}_1^*) \\ \overline{x}_2^* \overline{x}_2^* \overline{x}_2^* q q \\ \overline{x}_2^* \overline{x}_2^* \overline{x}_1^* \overline{x}_1^*) \\ \overline{x}_2^* \overline{x}_2^* \overline{x}_1^* \overline{x}_1^*) \\ \overline{x}_2^* \overline{x}_2^* \overline{x}_1^* \overline{x}_1^*) \\ \overline{x}_1^* \overline{x}_1 - b \delta \\ \overline{x}_1^* \overline{x}_1 - b \delta \end{array} $	$\begin{array}{c} e\mu, e\tau, \mu\tau \\ 2 \ e, \mu \ (\text{SS}) \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 0 \\ 2 \ e, \mu \ (\text{SS}) \\ 0 \\ 2 \ e, \mu \end{array}$	- 0-3 b - - 6-7 jets 6-7 jets 0-3 b 2 jets + 2 l 2 b	- Yes Yes - - Yes - -	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	Fr. 1.7 TeV X ₁₁₁ ¹ =0.11, A ₁₃₂₁₃₃₂₃₃ =0.07 \tilde{q}, \tilde{k} 1.35 TeV m(\tilde{q}_1)=m(\tilde{q}_1 , $r_{12,17}$ -11 mm \tilde{k}_1^+ 750 GeV m(\tilde{k}_1^0)=0.2×m(\tilde{t}_1), A_{122} -0 \tilde{k}_1^+ 450 GeV m(\tilde{t}_1^0)=0.2×m(\tilde{t}_1), A_{122} -0 \tilde{k}_1^+ 917 GeV m(\tilde{t}_1^0)=0.2×m(\tilde{t}_1), A_{122} -0 \tilde{k}_1^+ 870 GeV m(\tilde{t}_1^0)=0.2×m(\tilde{t}_1), A_{122} -0 \tilde{k}_1^+ 650 GeV m(\tilde{t}_1^0)=60 GeV \tilde{k}_1^- 0.4-1.0 TeV BR(\tilde{i} →be/ μ)>20%	1503.04430 1404.2500 1405.5086 1502.05686 1502.05686 1502.05686 1404.250 ATLAS:CONF-2015-026 ATLAS:CONF-2015-015
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 c	Yes	20.3	č 490 GeV m(t ²) ≤200 GeV	1501.01325
					10	1 Mass scale [TeV]	

SUSY2015 Aug 27

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty Chaowaroj (Max) Wanotayaroj

Run 1 Summary with pMSSM

- pMSSM uses well-motivated reductions but still covers a broad spectrum of parameter space
- Assume
 - R-parity conservation
 - Neutralino LSP
 - 1st/2nd generation squark with the same quantum number are mass degenerate

Scanned full set of 19						
pMSSM parameters up to						
masses of 4 TeV						

Parameter	Min value	Max value
$m_{L_1}(=m_{L_2})$	90 GeV	4 TeV
$m_{\tilde{e}_1}(=m_{\tilde{e}_2})$	90 GeV	4 TeV
$m_{\tilde{L}_3}$	90 GeV	4 TeV
$m_{\tilde{e}_3}$	90 GeV	4 TeV
$m_{\tilde{Q}_1}(=m_{\tilde{Q}_2})$	200 GeV	4 TeV
$m_{\tilde{u}_1}(=m_{\tilde{u}_2})$	200 GeV	4 TeV
$m_{\tilde{d}_1}(=m_{\tilde{d}_2})$	200 GeV	4 TeV
$m_{\tilde{O}_3}$	100 GeV	4 TeV
$m_{\tilde{u}_3}$	100 GeV	4 TeV
$m_{\tilde{d}_3}$	100 GeV	4 TeV
$ M_1 $	0 GeV	4 TeV
$ M_2 $	70 GeV	4 TeV
$ \mu $	80 GeV	4 TeV
M_3	200 GeV	4 TeV
$ A_t $	0 GeV	8 TeV
$ A_b $	0 GeV	4 TeV
$ A_{\tau} $	0 GeV	4 TeV
M_A	100 GeV	4 TeV
$\tan \beta$	1	60

SUSY2015 Aug 27

500	
million	
models	

Parameter	Minimum value	Maximum value
$\Delta \rho$	-0.0005	0.0017
$\Delta(g-2)_{\mu}$	-17.7×10^{-10}	43.8×10^{-10}
${\rm BR}(b\to s\gamma)$	2.69×10^{-4}	$3.87 imes 10^{-4}$
${\rm BR}(B_s\to \mu^+\mu^-)$	1.6×10^{-9}	$4.2 imes 10^{-9}$
${\rm BR}(B^+\to\tau^+\nu_\tau)$	66×10^{-6}	161×10^{-6}
$\Omega_{ ilde{\chi}_1^0} h^2$		0.1208
$\Gamma_{\text{invisible}(\text{SUSY})}(Z)$		$2{ m MeV}$
Masses of charged sparticles	$100{ m GeV}$	
$m(\tilde{\chi}_1^{\pm})$	$103{ m GeV}$	
$m(\tilde{u}_{1,2},\tilde{d}_{1,2},\tilde{c}_{1,2},\tilde{s}_{1,2})$	$200{ m GeV}$	_

 $124\,\mathrm{GeV}$

Apply constraints from

DM abundance LEP, Tevatron Higgs mass

Precision EW and flavor

Chaowaroj (Max) Wanotayaroj

m(h)

 $128 \, \mathrm{GeV}$

Run 1 Summary with pMSSM

Make full use of ATLAS simulation, reconstruction, and analysis tools

22 searches with

over

200 signal regions

0-lepton + 2–6 jets + $E_{\rm T}^{\rm miss}$ 0-lepton + 7–10 jets + $E_{\rm T}^{\rm miss}$ 1-lepton + jets + E_{T}^{miss} nclusive $\tau(\tau/\ell)$ + jets + $E_{\rm T}^{\rm miss}$ SS/3-leptons + jets + $E_{\rm T}^{\rm miss}$ 0/1-lepton + 3b-jets + $E_{\rm T}^{\rm miss}$ Monojet 0-lepton stop 1-lepton stop 3rd Gen 2-leptons stop Monojet stop Stop with Z boson 2b-jets + $E_{\rm T}^{\rm miss}$ $tb + E_{\rm T}^{\rm miss}$, stop lh 2-leptons $2-\tau$ \geq 3-leptons 4-leptons **Disappearing Track** Long-lived particles $H/A \rightarrow \tau^+ \tau^-$

Details of each analysis linked in backup

- 310,327 models analyzed
- 30 billion signal events generated
- 44,559 models fully reconstructed with 600 million signal events total

The **most comprehensive** results from ATLAS on SUSY to date

Outline Mass Limits

ATLAS

m($\widetilde{\chi}_1^0)$ [GeV]

500

0^L

Squarks

Sleptons

Dark Matter

Chaowaroj (Max) Wanotayaroj

- 2D plot showing fraction of models excluded
 - Usually in mass plane of two sparticles
 - Color scale represents fraction of models excluded
 - Black is 100% excluded
 - White means no model point that pass pre-ATLAS Run 1 constraints
 - Fraction excluded depends on the choice of parameters' scan ranges
 - White line is 95% CL limit from a simplified model
- Example on the left:
 - Simplified model limit from 0L+2-6jets+ E_T^{miss} q

SUSY2015 Aug 27

ATLAS constraints from LHC Run 1

Good sensitivity from monojet search

Band of sensitivity for model with $\chi_1^{\pm} \rightarrow$ wino-like LSP model from disappearing track search

aTLAS constraints from LHC Run 1 3rd Gen—Stop

- ATLAS 3rd generations searches show good coverage in general
 - Complemented by disappearing track search for $m(\tilde{\chi}_1^0)$ < 200 GeV
- Difference in mass reach for pMSSM models results from 100% $\tilde{t}_1 \rightarrow t + \tilde{\chi}_1^0$ BR assumption in the simplified models

SUSY2015 Aug 27

3rd Gen—Sbottom

• For sbottom, the sensitivity is well-captured by the limit from simplified models

ATLAS constraints from LHC Run 1 EW Sleptons

- When compared with simplified models which assume either only LH or RH sleptons are produced, sensitivity to pMSSM models are well-represented
- Limited sensitivity to stau due to the difficulty to trigger and larger backgrounds

SUSY2015 Aug 27

Chaowaroj (Max) Wanotayaroj

Outline **Mass Limits**

ATLAS

Naturalness

And many others...

SUSY2015 Aug 27

Chaowaroj (Max) Wanotayaroj

Relic Abundance

• Bino models:

- Z and h funnel can be seen and about 2/3 are excluded
- ATLAS searches has sensitivity up to $m(\tilde{\chi}_1^0) \lesssim 800 \text{ GeV}$
- Wino models:
 - Again up to $m(\tilde{\chi}_1^0) \lesssim 800$ GeV. Especially good below 200 GeV where 80% are excluded
 - Dominated by disappearing track analysis
- Higgsino models:
- Charged higgsino lifetime is too short for disappearing track analysis SUSY2015 Aug 27 Chaowaroj (Max) Wanotayaroj

Same plot, static versions Before (top) and after (bottom)

DM Interaction Cross Section

• The box of excluded regions are dominated by almost-pure wino LSP models which are constrained by disappearing track analysis

Outline Mass Limits

Dark Matter

SUSY2015 Aug 27

Chaowaroj (Max) Wanotayaroj

Naturalness of models

- Check the sensitivity as a function of fine tuning
 - No naturalness requirement in model selections
 - The fine-tuning parameter = 10 means cancellation of parameters up to an order of magnitude
 - we employ the definition of Barbieri and Giudic (Nucl. Phys. B306 1459 (1988) 63.)
- ATLAS Run 1 searches' sensitivity mostly independent of fine-tuning
- The mass spectrum of the lowest finetuned model (~O(2%)) surviving all constraints is shown on the right plot
 - Wino-like LSP, which only slightly lighter than its charge partner, evading disappearing track search
 - Stop just beyond Run 1 reach
 - Gluino and left-squark also just beyond Run 1 reach

And many others...

SUSY2015 Aug 27

Chaowaroj (Max) Wanotayaroj

2 (100.0%)

<10⁻¹

Conclusions

- ATLAS Run 1 searches are most effective for strongly interacting particles
- Sensitivity to simplified models have been shown to have a fairly good correspondence to the sensitivity to pMSSM models, but significant differences are observed in certain regions
- Good complementarity to dark matter detection experiments
- Models and the corresponding ATLAS exclusions will be publicly available
- Additional sensitivity in Run 2 will have a final say on lower fine-tuned models

Backup

pMSSM

- The minimal supersymmetric extension of the Standard Model (MSSM) has over a hundred free parameters
- Typically, a simplified model with a few varying parameters is presented in context of an ATLAS search
 - The effect of multiple production channels and decay modes are usually lost
- A set of assumptions reduces MSSM to 19 free parameters called phenomenological MSSM (pMSSM) [Ref <u>1</u>, <u>2</u>, <u>3</u>]
 - Motivated by experiment results or possible SUSY breaking mechanism
 - R-parity is exactly conserved
 - No new source of CP-violation
 - No flavor changing neutral currents parameters
 - The first two generations of squarks and sleptons with the same quantum numbers are mass degenerate, and their Yukawa couplings are too small to affect sparticle production or precision observables
 - Lightest neutralino is the LSP

Parameter	Min value	Max value	Note
$m_{\tilde{L}_1}(=m_{\tilde{L}_2})$	$90{ m GeV}$	$4\mathrm{TeV}$	Left-handed slepton (first two gens.) mass
$m_{\tilde{e}_1}(=m_{\tilde{e}_2})$	$90{ m GeV}$	$4\mathrm{TeV}$	Right-handed slepton (first two gens.) mass
$m_{ ilde{L}_3}$	$90{ m GeV}$	$4\mathrm{TeV}$	Left-handed stau doublet mass
$m_{\tilde{e}_3}$	$90{ m GeV}$	$4\mathrm{TeV}$	Right-handed stau mass
$m_{\tilde{Q}_1}(=m_{\tilde{Q}_2})$	$200{\rm GeV}$	$4\mathrm{TeV}$	Left-handed squark (first two gens.) mass
$m_{\tilde{u}_1}(=m_{\tilde{u}_2})$	$200{\rm GeV}$	$4\mathrm{TeV}$	Right-handed up-type squark (first two gens.) mass
$m_{\tilde{d}_1}(=m_{\tilde{d}_2})$	$200{\rm GeV}$	$4\mathrm{TeV}$	Right-handed down-type squark (first two gens.) mass
$m_{\tilde{Q}_3}$	$100{\rm GeV}$	$4\mathrm{TeV}$	Left-handed squark (third gen.) mass
$m_{ ilde{u}_3}$	$100{ m GeV}$	$4\mathrm{TeV}$	Right-handed top squark mass
$m_{\tilde{d}_3}$	$100{\rm GeV}$	$4\mathrm{TeV}$	Right-handed bottom squark mass
$ M_1 $	$0{ m GeV}$	$4\mathrm{TeV}$	Bino mass parameter
$ M_2 $	$70{ m GeV}$	$4\mathrm{TeV}$	Wino mass parameter
$ \mu $	$80{ m GeV}$	$4\mathrm{TeV}$	Bilinear Higgs mass parameter
M_3	$200{\rm GeV}$	$4\mathrm{TeV}$	Gluino mass parameter
$ A_t $	$0{ m GeV}$	$8\mathrm{TeV}$	Trilinear top coupling
$ A_b $	$0{ m GeV}$	$4\mathrm{TeV}$	Trilinear bottom coupling
$ A_{ au} $	$0{ m GeV}$	$4\mathrm{TeV}$	Trilinear τ lepton coupling
M_A	$100{ m GeV}$	$4\mathrm{TeV}$	Pseudoscalar Higgs boson mass
$\tan\beta$	1	60	Ratio of the Higgs vacuum expectation values

pMSSM free parameters and their scan range

ATLAS Searches

- 22 distinct ATLAS searches represent a wide range of strategies
- Each has many signal regions
 - Most regions are considered, but some are left out due to practical reasons
 - Almost 200 signal regions total

• 4 general categories of analyses

- 1. Inclusive: Prompt decay of first two generations squarks or gluinos, including cascade decays
- 2. 3rd Gen: Direct production of top and bottom squarks (stop and sbottom)
- 3. Electroweak: Production of electroweakinos (neutralinos and charginos) and sleptons
- 4. Other: Long-live particles and heavy Higgs

Analysis	Ref.	Category
0-lepton + 2–6 jets + $E_{\rm T}^{\rm miss}$	Link	
0-lepton + 7–10 jets + $E_{\rm T}^{\rm miss}$	<u>Link</u>	
1 -lepton + jets + $E_{\rm T}^{\rm miss}$	<u>Link</u>	
$ au(au/\ell) + ext{jets} + E_{ ext{T}}^{ ext{miss}}$	<u>Link</u>	Inclusive
$SS/3$ -leptons + jets + E_T^{miss}	<u>Link</u>	
$0/1$ -lepton + $3b$ -jets + $E_{\rm T}^{\rm miss}$	<u>Link</u>	
Monojet	<u>Link</u>	
0-lepton stop	Link	
1-lepton stop	<u>Link</u>	
2-leptons stop	<u>Link</u>	
Monojet stop	<u>Link</u>	hird generation
Stop with Z boson	<u>Link</u>	
$2b$ -jets + $E_{\rm T}^{\rm miss}$	<u>Link</u>	
$tb + E_{\rm T}^{\rm miss}$, stop	<u>Link</u>	
ℓh	Link	
2-leptons	<u>Link</u>	
$2\text{-}\tau$	<u>Link</u>	Floatrowook
3-leptons	<u>Link</u>	Electroweak
4-leptons	Link	
Disappearing Track	Link	
Long-lived particle	1, 2	Other
$H/A \to \tau^+ \tau^-$	Link	Other

Lepton (ℓ) refers specifically to $e\pm$ and $\mu\pm$ states, except in the cases of the electroweak 3-leptons and 4-leptons analyses where τs are also included.

Disappearing Track Search

- Motivated by anomaly-mediated SUSY breaking
- LSP almost pure-wino
- LSP almost mass degenerated with the lightest chargino due to radiative correction involving EW gauge bosons
- Typical mass spitting is ~160 MeV
- The chargino has a lifetime of a fraction of nanosecond
- Decay length of a few centimeters
- The chargino left a few hit in the tracker, then decay to LSP and soft charged pion, which is not reconstructed
- Appear as "disappearing track" in the tracking system
- Paper: <u>http://journals.aps.org/prd/abstract/10.1103/PhysRevD.88.112006</u>

The efficiency for decaying charginos with the disappearing-track selection. Vertical and horizontal axes are the radius and η of the decay, respectively. Sensitive layers and areas of the pixel, SCT and TRT detectors are also indicated in the figure. SUSY2015 Aug 27 Chaowaroj (Max) Wanotayaroj

Model Points

- Upper bound on all sparticles mass is 4 TeV
 - Accessible for the LHC Run 1
 - This choice has direct effect on fraction of model excluded
- Randomly pick values for the 19 parameters within the ranges
 - 500 million models
- Further constrain the models by precision EW and flavor, dark matter abundance, LEP results, and Higgs mass
 - 310,327 models
 - Will be referred to as pre-ATLAS Run 1 constraints
- Importance sampling by LSP type
 - Models with bino-like LSP tends to over-produced dark matter but they are important
 - Observable LSP at 8 TeV and available decay modes
 - From the 500 millions models, use the first 20 millions to pick wino and Higgsino-like LSP models
 - Use the rest to pick Bino-like LSP models
 - Weight them to account for the bias

Constrains on acceptable pMSSM points

Parameter	Minimum value	Maximum value
$\Delta \rho$	-0.0005	0.0017
$\Delta(g-2)_{\mu}$	-17.7×10^{-10}	43.8×10^{-10}
$BR(b \rightarrow s\gamma)$	2.69×10^{-4}	$3.87 imes 10^{-4}$
${\rm BR}(B_s\to\mu^+\mu^-)$	$1.6 imes 10^{-9}$	4.2×10^{-9}
${\rm BR}(B^+ \to \tau^+ \nu_\tau)$	66×10^{-6}	161×10^{-6}
$\Omega_{ ilde{\chi}_1^0} h^2$		0.1208
$\Gamma_{\rm invisible(SUSY)}(Z)$	—	$2{ m MeV}$
Masses of charged sparticles	$100 {\rm GeV}$	—
$m(\tilde{\chi}_1^{\pm})$	$103{ m GeV}$	—
$m(\tilde{u}_{1,2},\tilde{d}_{1,2},\tilde{c}_{1,2},\tilde{s}_{1,2})$	$200{ m GeV}$	
m(h)	$124{ m GeV}$	$128\mathrm{GeV}$

LSP type of sample models

Simulated LSP type Definition Sampled Weight Number Fraction $N_{11}^2 > \max(N_{12}^2, N_{13}^2 + N_{14}^2)$ 'Bino-like' 480×10^{6} 103,41035%1/24 $N_{12}^2 > \max(N_{11}^2, N_{13}^2 + N_{14}^2)$ 'Wino-like' 80,233 26%1 20×10^{6} $(N_{13}^2 + N_{14}^2) > \max(N_{11}^2, N_{12}^2)$ 'Higgsino-like' 126,684 39%1 Total 500×10^{6} 310,327

SUSY2015 Aug 27

Chaowaroj (Max) Wanotayaroj

Model Properties

- Distributions of gluino and LSP mass in the models before ATLAS Run 1 search applied is shown on the left and middle plot
- Mass distributions of various sparticles in the model sample before ATLAS Run 1 search shown on the right plot

Evaluating Models

- Start with each of the 310,327 model points passing the pre-ATLAS Run 1 constraints
- Check if any production process pass minimum requirement
 - If not, the is can't be excluded
- Generate a sample of events
 - Only at particle level
 - Detector inefficiency are estimated

	Minimum cross	Fraction of models generated		
Production mode	section [fb]	Bino LSP	Wino LSP	Higgsino LSP
Strong	0.25	82.5%	74.9%	76.7%
Mixed	0.25	52.6%	42.1%	13.9%
Electroweak	7.5	38.3%	72.5%	75.0%
Slepton pair	0.75	9.6%	7.9%	9.5%

- Expected event yield in each signal region (N_{sig}) is calculated, then compare it to the model-independent 95% CL upper bound for the corresponding signal region (N_{max}^{95})
 - If N_{sig} considerably larger than N_{max}^{95} , the model can't be excluded
 - If N_{sig} considerably smaller than N_{max}^{95} , the model is excluded
 - Otherwise, need full detector simulation and do CLs-method
 - The exact threshold depends on the signal region
- Model points with long-lived squarks, gluinos or sleptons with $c\tau > 1mm$ are treated separately with long-lived search

Left- and Right-handed

- Search reach for left-handed and right-handed lightest squark
 - LH up and down type squarks form an SU(2) doublet so they are mass degenerate, effectively increasing production cross section
 - RH squarks lack weak coupling and have small Yukawa coupling
- LH and RH equivalent sensitivity assumption is not justified in context of pMSSM

aTLAS constraints from LHC Run 1 3rd Gen—Stop

• Similar to the light-flavor squark, left-right chirality has nontrivial effect on the sensitivity in context of pMSSM

Exclusion from Disappearing track analysis. Strongest when LSP is wino-like

This band is dominate by bino-like LSP due to the relic density limit controlled by Z and h funnels

• pMSSM sensitivity from electroweak searches on the $\tilde{\chi}_1^0 - \tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm} - \tilde{\chi}_1^0$ plane

ATLAS constraints from LHC Run 1

Long-lived Particles

- Model with long-lived squarks, gluinos, and sleptons are considered using Long-lived particle searches only
- Particularly good at sbottom, bad at gluinos

Long-lived	lived Bino LSP		Wino	LSP	Higgsino LSP	
Particle	Models	Excluded	Models	Excluded	Models	Excluded
\widetilde{g}	899~(5.2%)	5.1%	58(3.4%)	3.4%	9~(0.0%)	0.0%
${ ilde b}_1$	1252~(99.6%)	76.4%	51~(100.0%)	78.4%	67~(100.0%)	80.6%
${ ilde t}_1$	345~(56.8%)	36.5%	6~(100.0%)	66.7%	17~(82.4%)	47.1%
$ ilde{ au}_1$	406~(100.0%)	37.4%	2 (100.0%)	0.0%	41~(100.0%)	14.6%

Number of model points with long-lived particles and their exclusion fraction. The percentages in parenthesis are the fractions of these model points where the long-lived particle has a lifetime long enough to traverse the full detector.

Heavy Higgs

- Search for Neutral Heavy Higgs, H or A, to $\tau\tau$
- Good correspondence observed. Simplified limit slightly underestimates the pMSSM result due to lighter electroweakinos

Chaowaroj (Max) Wanotayaroj

Effect of ATLAS Higgs boson coupling measurements Effect of Higgs Coupling

- The current expected limit on the coupling to *b*-quark (κ_b) is too loose
- The observed limit disfavors about 3.1% of pMSSM models
- If LSP is light enough, $h \rightarrow$ invisible will be enhanced
 - Only bino models can have LSP this light and still satisfy pre-ATLAS Run 1 constraints
- Disfavor ~6.6% of bino models, which is ~0.03% of all points

Precision observables Precision observables

- In general, ATLAS Run 1 search rules out models uniformly across the range of observables
- The "tail" models are slightly more sensitive since they usually have a light SUSY particle contributing via loop diagram
- The ranges of each plots correspond to the one used in model selection

