Scattering Amplitudes

Henriette Elvang
University of Michigan - Ann Arbor

SUSY 2015

Lake Tahoe
August 25, 2015

Gluon scattering amplitudes

Using Feynman diagrams, the tree-level gluon amplitude requires

$$
\begin{array}{lr}
g+g \rightarrow g+g & 4 \text { diagrams } \\
g+g \rightarrow g+g+g & 25 \text { diagrams } \\
g+g \rightarrow g+g+g+g & 220 \text { diagrams }
\end{array}
$$

and for $g+g \rightarrow 8 g$ we need more than one million diagrams.

Gluon scattering amplitudes

Using Feynman diagrams, the tree-level gluon amplitude requires

$$
\begin{array}{lr}
g+g & \rightarrow g+g \\
g+g & \rightarrow g+g+g \\
& 4 \text { diagrams } \\
g+g & \rightarrow g+g+g+g
\end{array} \quad 220 \text { diagrams }
$$

and for $g+g \rightarrow 8 g$ we need more than one million diagrams.

Each diagram gets increasingly complicated as n grows

Gluon scattering amplitudes

Using Feynman diagrams, the tree-level gluon amplitude requires

$$
\begin{array}{lr}
g+g \rightarrow g+g & 4 \text { diagrams } \\
g+g \rightarrow g+g+g & 25 \text { diagrams } \\
g+g \rightarrow g+g+g+g & 220 \text { diagrams }
\end{array}
$$

and for $g+g \rightarrow 8 g$ we need more than one million diagrams.

However, the result for the amplitudes can be written much more compactly, e.g.

$$
A_{n}\left[1^{+} \ldots i^{-} \ldots j^{-} \ldots n^{+}\right]=\frac{\langle i j\rangle^{4}}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle}
$$

Here + and - indicate helicity of the gluons (all outgoing) and

$$
\langle i j\rangle=\sqrt{2 p_{i} \cdot p_{j}} e^{i \text { phase }}
$$

Gluon scattering amplitudes

Using Feynman diagrams, the tree-level gluon amplitude requires

$$
\begin{array}{lr}
g+g & \rightarrow g+g \\
g+g & \rightarrow g+g+g \\
& 4 \text { diagrams } \\
g+g & \rightarrow g+g+g+g
\end{array} \quad 220 \text { diagrams }
$$

and for $g+g \rightarrow 8 g$ we need more than one million diagrams.
This is a major simplification!

However, the result for the amplitudes can be written much more compactly, e.g.

$$
A_{n}\left[1^{+} \ldots i^{-} \ldots j^{-} \ldots n^{+}\right]=\frac{\langle i j\rangle^{4}}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle}
$$

Here + and - indicate helicity of the gluons (all outgoing) and

$$
\langle i j\rangle=\sqrt{2 p_{i} \cdot p_{j}} e^{i \text { phase }}
$$

Scattering Amplitudes

Why are the results so simple?

Is there a better way to calculate amplitudes?

That is what this talk is about!

What makes gauge theory amplitudes difficult?

Feynman rules (and hence the diagrams) depend on

- Choice of gauge
- Field redefinitions
because the Lagrangian is off-shell.
But the on-shell amplitudes are independent of both.

If we can work only with on-shell invariant input, then these complications are avoided.

There is a way to do this: on-shell recursion relations
[Britto, Cachazo, Feng, Witten (2005)]

Better ways to calculate

On-shell recursion relations

Idea: build up n-point amplitudes from lower-point on-shell amplitudes

3-particle amplitude 4 -particle amplitude

Better ways to calculate

On-shell recursion relations

Idea: build up n-point amplitudes from lower-point on-shell amplitudes

3-particle amplitude

4-particle amplitude

3. and 4-particle amplitudes

5-particle amplitude

Better ways to calculate

On-shell recursion relations

Idea: build up n-point amplitudes from lower-point on-shell amplitudes

3-particle amplitude

4-particle amplitude

3-, 4- and 5-particle amplitudes
6-particle amplitude

3. and 4-particle amplitudes

$+$

Better ways to calculate

On-shell recursion relations

Idea: build up n-point amplitudes from lower-point on-shell amplitudes

Mathematically
"hat" indicates momentum shift

$$
A_{n}=\sum_{\text {diagrams } I} \hat{A}_{\mathrm{L}}\left(z_{I}\right) \frac{1}{P_{I}^{2}} \hat{A}_{\mathrm{R}}\left(z_{I}\right)
$$

The derivation exploits complex analysis and Cauchy's theorem in a very simple way: uses knowledge of physical poles in amplitudes and factorization.

Example 1 gluon + gluon \rightarrow squark + squark

As if four diagrams weren't bad enough.... having to square this $\left|A_{4}\right|^{2}$ and sum over colors \& helicities to get the cross-section just makes it worse.

Recursion relations makes this much simpler!

I'll illustrate it first in the limit of $m_{\text {squark }}=0$

Example 1 gluon + gluon \rightarrow squark + squark

$$
m_{\text {squark }}=0
$$

Recursion relations: only one diagram

$$
\left.\begin{array}{l}
A_{4}\left[g_{1}^{ \pm} g_{2}^{ \pm} \tilde{q}_{3} \tilde{q}_{4}^{*}\right]=0 \\
A_{4}\left[g_{1}^{-} g_{2}^{+} \tilde{q}_{3} \tilde{q}_{4}^{*}\right]=\frac{[23]^{2}[24]^{2}}{[12][23][34][41]} . \\
A_{4}\left[g_{1}^{+} g_{2}^{-} \tilde{q}_{3} \tilde{q}_{4}^{*}\right]=([i j] \leftrightarrow\langle i j\rangle)
\end{array}\right\} \begin{aligned}
& \langle i j\rangle=\sqrt{2 p_{i} \cdot p_{j}} e^{i \mathrm{phase}} \\
& {[i j]=\sqrt{2 p_{i} \cdot p_{j}} e^{-i \text { phase }} \quad\langle 12\rangle[12]=\left(p_{1}+p_{2}\right)^{2}=-s, \quad \text { etc }} \\
& \left|A_{4}\left[g_{1}^{-} g_{2}^{+} \tilde{q}_{3} \tilde{q}_{4}^{*}\right]\right|^{2}=\frac{s_{23}^{2} s_{24}^{2}}{s_{12} s_{23} s_{34} s_{41}}=\frac{t^{2}}{s^{2}}
\end{aligned}
$$

Example 1 gluon + gluon \rightarrow squark + squark

Recursion relations: only one diagram
$m_{\text {squark }}$ nonzero

$$
\begin{array}{r}
A_{4}\left[g_{1}^{-} g_{2}^{-} \tilde{q}_{3} \tilde{q}_{4}^{*}\right]=\frac{1}{[12]^{2}} \frac{s m_{\tilde{q}}^{2}}{u_{1}}: \\
\left.\left.A_{4}\left[g_{1}^{-} g_{2}^{+} \tilde{q}_{3} \tilde{q}_{4}^{*}\right]=-\frac{1}{u_{1} s}\langle 1| 4 \right\rvert\, 2\right][2|3| 1\rangle, \\
u_{1}=u-m_{\tilde{q}}^{2} \\
t_{1}=t-m_{\tilde{q}}^{2}
\end{array}
$$

$$
\sum\left|A_{4}\left(g_{1} g_{2} \tilde{q}_{3} \tilde{q}_{4}^{*}\right)\right|^{2}=2 g^{4}\left\{N\left(N^{2}-1\right)\left(1-2 \frac{u_{1} t_{1}}{s^{2}}\right)-\frac{N^{2}-1}{N}\right\}\left[1-2 \frac{m_{\tilde{q}}^{2} s}{u_{1} t_{1}}\left(1-\frac{m_{\tilde{q}}^{2} s}{u_{1} t_{1}}\right)\right]
$$

This is the well-known result from the gluon to squark cross-section in the literature. Here derived via recursion relations by a Michigan undergrad, Filipe Rudriguez.

Example 2: Gluon fusion

Gluon-Higgs fusion:

$$
\text { g g } \rightarrow \text { Higgs }
$$

$h \operatorname{Tr} F_{\mu \nu} F^{\mu \nu}$
dim-5 operator

> 1-loop
> \Rightarrow tree-level

2-loop
$\Rightarrow 1$-loop
etc

Study of Scattering Amplitudes

Two pillars

Practical application
to phenomenologically relevant processes

Uncover the mathematical structure of the amplitudes

TRUTH

BEAUTY

Three Major Research Directions

1) Try to push loop calc as far as possible in a very controlled simple theory: "(planar) N=4 Super Yang Mills Theory" (SYM) (gluons, gluinos, scalars - all massless)

Goals: 'Solve' theory at all loop order.
Compact expressions? Understand why!
2) Adapt lessons from N=4 SYM to phenomenologically relevant theories to find new computational methods.

Goals: application to analysis of data from
LHC and future particle experiments. New physics insights?
3) Use new methods to explore perturbative quantum gravity.

Goals: Point-particle quantum gravity perturbatively sensible?
Gravity as (gauge theory)²
Structure of string theory amplitudes

Three Major Research Directions

1) Try to push loop calc as far as possible in a very controlled simple theory: "(planar) N=4 Super Yang Mills Theory" (SYM) (gluons, gluinos, scalars - all massless)

Goals: 'Solve' theory at all loop order. Compact expressions? Understand why!
2) Adapt lessons from $N=4$ SYM to phenomenologically relevant theories to find new computational methods.

Goals: application to analysis of data from
LHC and future particle experiments. New physics insights?
3) Use new methods to explore perturbative quantum gravity.

Goals: Point-particle quantum gravity perturbatively sensible?
Gravity as (gauge theory)²
Structure of string theory amplitudes

1) Try to push loop calc as far as possible in a very controlled simple theory: "(planar) N=4 Super Yang Mills Theory" (SYM) (gluons, gluinos, scalars - all massless)

Goals: 'Solve' theory at all loop order.
Compact expressions? Understand why!

Tree-level: all tree amplitudes in N=4 SYM solved via recursion.

Planar N=4 Super Yang Mills Theory and GEOMETRY

It turns out that amplitudes have a geometric interpretation.
Recursion relations => amplitude = sum of terms
Each of these terms can be interpreted as the volume of a 4-simplex

$$
\begin{aligned}
& 0 \text {-simplex }=\text { a point } \\
& 1 \text {-simplex }=\text { line segment } \\
& 2 \text {-simplex }=\text { triangle } \\
& 3 \text {-simplex }=\text { tetrahedron. }
\end{aligned}
$$

Planar N=4 Super Yang Mills Theory and GEOMETRY

It turns out that amplitudes have a geometric interpretation.
Recursion relations => amplitude = sum of terms
Each of these terms can be interpreted as the volume of a 4-simplex
Just like a polygon can be triangulated in different ways
for computation of its area, a polytope can be triangulated into simplices.

In this way, we can interpret the amplitude as the volume of polytope in a higher-dimensional space!!

Planar N=4 Super Yang Mills Theory and GEOMETRY

It turns out that amplitudes have a geometric interpretation.
Recursion relations => amplitude = sum of terms
Each of these terms can be interpreted as the volume of a 4-simplex
Just like a polygon can be triangulated in different ways
for computation of its area, a polytope can be triangulated into simplices.

In this way, we can interpret the amplitude as the volume of polytope in a higher-dimensional space!!

Three Major Research Directions

1) Try to push loop calc as far as possible in a very controlled simple theory: "(planar) N=4 Super Yang Mills Theory" (SYM) (gluons, gluinos, scalars - all massless)

Goals: 'Solve' theory at all loop order.
Compact expressions? Understand why!
2) Adapt lessons from $N=4 S Y M$ to phenomenologically relevant theories to find new computational methods.

Goals: application to analysis of data from
LHC and future particle experiments. New physics insights?
3) Use new methods to explore perturbative quantum gravity.

Goals: Point-particle quantum gravity perturbatively sensible?
Gravity as (gauge theory) ${ }^{2}$
Structure of string theory amplitudes

3) Use new methods to explore perturbative quantum gravity.

Point-particle quantum gravity is non-renormalizable.
So not a good theory of quantum gravity.

But what if the perturbation series were finite at each loop order?

3) Use new methods to explore perturbative quantum gravity.

Point-particle quantum gravity is non-renormalizable.
So not a good theory of quantum gravity.

But what if the perturbation series were finite at each loop order?

Is $\mathcal{N}=8$ Supergravity Ultraviolet Finite?

$$
\text { Z. } \text { Bern }^{a} \text {, L. J. Dixon }{ }^{b} \text {, R. Roiban }{ }^{c}
$$

$N=8$ supergravity in 4d:
< 2007: 4-graviton 1,2,3-loop finite $\begin{aligned} & \text { [Bern, Carrasco, Dixon, Johansson, } \\ & \text { 2009: 4-graviton 4-loop finite }\end{aligned}$ Kosower, Roiban (2007)+(2009)]

Done using generalized unitarity AND gravity as (gauge theory)²

3) Use new methods to explore perturbative quantum gravity.

Point-particle quantum gravity is non-renormalizable.
So not a good theory of quantum gravity.

But what if the perturbation series were finite at each loop order?

Is $\mathcal{N}=8$ Supergravity Ultraviolet Finite?

$$
\text { Z. } \text { Bern }^{a} \text {, L. J. Dixon }{ }^{b} \text {, R. Roiban }{ }^{c}
$$

$N=8$ supergravity in 4d:
< 2007: 4-graviton 1,2,3-loop finite [Bern, Carrasco, Dixon, Johansson, 2009: 4-graviton 4-loop finite Kosower, Roiban (2007)+(2009)] 2010: all n-graviton amplitudes finite $L<7$ guaranteed by symmetries.
Used amplitude techniques to asses
[Freedman, Kiermaier, HE; Kiermaier, HE; Beisert, Kiermaier, Freedman, Morales, Stieberger (2010)] possible UV counterterms. No loops needed.

Perturbative finiteness still an open question.

Summary

Modern on-shell methods for scattering amplitudes are incredibly powerful.

Applications in a wide range of problems:

- Pheno amplitudes
- Formal developments (mathematical structure, geometry)
- Quantum gravity
- Studies of formal aspects of QFT
- Non-renormalization theorems
and much more!

Textbook

Published by
Cambridge University Press (2015)
(preview: arXiv:1308.1697)
Includes introductions to:
Spinor helicity formalism for Feynman diagrams.

On-shell recursion relations.
Supersymmetry applications.
Unitarity cuts and loops.

