Scattering Amplitudes

Henriette Elvang University of Michigan – Ann Arbor

> **SUSY 2015** Lake Tahoe August 25, 2015

THEORETICAL PHYSICS UNIVERSITY OF MICHIGAN

MICHIGAN CENTER FOR

Using Feynman diagrams, the tree-level gluon amplitude requires

$g + g \rightarrow g + g$	4 diagrams
$g + g \rightarrow g + g + g$	25 diagrams
$g + g \rightarrow g + g + g + g$	220 diagrams

and for $g+g \rightarrow 8g$ we need more than one million diagrams.

Using Feynman diagrams, the tree-level gluon amplitude requires

$g + g \rightarrow g + g$	4 diagrams
$g + g \rightarrow g + g + g$	25 diagrams
$g + g \rightarrow g + g + g + g$	220 diagrams

and for $g+g \rightarrow 8g$ we need more than one million diagrams.

Each diagram gets increasingly complicated as n grows

Using Feynman diagrams, the tree-level gluon amplitude requires

$g + g \rightarrow g + g$	4 diagrams
$g + g \rightarrow g + g + g$	25 diagrams
$g + g \rightarrow g + g + g + g$	220 diagrams

and for $g+g \rightarrow 8g$ we need more than one million diagrams.

However, the result for the amplitudes can be written much more compactly, e.g.

 $\langle ij \rangle = \sqrt{2p_i p_j} e^{i \text{phase}}$

$$A_n[1^+ \dots i^- \dots j^- \dots n^+] = \frac{\langle ij \rangle^4}{\langle 12 \rangle \langle 23 \rangle \dots \langle n1 \rangle}.$$

Here + and - indicate helicity of the gluons (all outgoing) and

spinor helicity formalism

Using Feynman diagrams, the tree-level gluon amplitude requires

$g + g \rightarrow g + g$	4 diagrams
$g + g \rightarrow g + g + g$	25 diagrams
$g + g \rightarrow g + g + g + g$	220 diagrams

and for $g+g \rightarrow 8g$ we need more than one million diagrams.

However, the result for the amplitudes can be written major much more compactly, e.g. simplification!

$$A_n[1^+ \dots i^- \dots j^- \dots n^+] = \frac{\langle ij \rangle^4}{\langle 12 \rangle \langle 23 \rangle \dots \langle n1 \rangle}$$

Here + and - indicate helicity of the gluons (all outgoing) and

 $\langle ij \rangle = \sqrt{2p_i p_j} e^{i \text{phase}}$

spinor helicity formalism

This is a

Scattering Amplitudes

Why are the results so simple?

Is there a better way to calculate amplitudes?

That is what this talk is about!

What makes gauge theory amplitudes difficult?

Feynman rules (and hence the diagrams) depend on

- Choice of gauge
- Field redefinitions

because the Lagrangian is off-shell.

But the on-shell amplitudes are *independent* of both.

If we can work only with on-shell invariant input, then these complications are avoided.

There is a way to do this: *on-shell recursion relations*

[Britto, Cachazo, Feng, Witten (2005)]

On-shell recursion relations

Idea: build up n-point amplitudes from lower-point *on-shell* amplitudes

3-particle amplitude 4-particle amplitude

On-shell recursion relations

Idea: build up n-point amplitudes from lower-point *on-shell* amplitudes

On-shell recursion relations

Idea: build up n-point amplitudes from lower-point *on-shell* amplitudes

On-shell recursion relations

Idea: build up n-point amplitudes from lower-point *on-shell* amplitudes

The *derivation* exploits complex analysis and Cauchy's theorem in a very simple way: uses knowledge of physical poles in amplitudes and factorization.

Example 1 gluon + gluon \rightarrow squark + squark

As if four diagrams weren't bad enough.... having to square this $|A_4|^2$ and sum over colors & helicities to get the cross-section just makes it worse.

Recursion relations makes this much simpler!

I'll illustrate it first in the limit of $m_{squark} = 0$

Example 1 gluon + gluon \rightarrow squark + squark

 $m_{squark} = 0$

Recursion relations: only one diagram

$$A_{4}[g_{1}^{\pm}g_{2}^{\pm}\tilde{q}_{3}\tilde{q}_{4}^{*}] = 0$$

$$A_{4}[g_{1}^{-}g_{2}^{+}\tilde{q}_{3}\tilde{q}_{4}^{*}] = \frac{[23]^{2}[24]^{2}}{[12][23][34][41]}$$

$$A_{4}[g_{1}^{+}g_{2}^{-}\tilde{q}_{3}\tilde{q}_{4}^{*}] = ([ij] \leftrightarrow \langle ij \rangle)$$

$$\langle ij \rangle = \sqrt{2p_i p_j} e^{i \text{phase}}$$

 $[ij] = \sqrt{2p_i p_j} e^{-i \text{phase}}$

$$\langle 12 \rangle [12] = (p_1 + p_2)^2 = -s, \quad \text{etc}$$

$$\left|A_4[g_1^-g_2^+\tilde{q}_3\tilde{q}_4^*]\right|^2 = \frac{s_{23}^2s_{24}^2}{s_{12}s_{23}s_{34}s_{41}} = \frac{t^2}{s^2}$$

Example 1 gluon + gluon \rightarrow squark + squark

Recursion relations: only one diagram

m_{squark} nonzero

$$A_{4}[g_{1}^{-}g_{2}^{-}\tilde{q}_{3}\tilde{q}_{4}^{*}] = \frac{1}{[12]^{2}}\frac{sm_{\tilde{q}}^{2}}{u_{1}}$$

$$A_{4}[g_{1}^{-}g_{2}^{+}\tilde{q}_{3}\tilde{q}_{4}^{*}] = -\frac{1}{u_{1}s}\langle 1|4|2][2|3|1\rangle,$$

$$u_{1} = u - m_{\tilde{q}}^{2}$$

$$t_{1} = t - m_{\tilde{q}}^{2}$$

$$\sum \left| A_4(g_1 g_2 \tilde{q}_3 \tilde{q}_4^*) \right|^2 = 2g^4 \left\{ N(N^2 - 1) \left(1 - 2\frac{u_1 t_1}{s^2} \right) - \frac{N^2 - 1}{N} \right\} \left[1 - 2\frac{m_{\tilde{q}}^2 s}{u_1 t_1} \left(1 - \frac{m_{\tilde{q}}^2 s}{u_1 t_1} \right) \right]$$

This is the well-known result from the gluon to squark cross-section in the literature. Here derived via recursion relations by a Michigan undergrad, Filipe Rudriguez.

Example 2: Gluon fusion

Study of Scattering Amplitudes

Two pillars

Practical application to phenomenologically relevant processes

Uncover the *mathematical structure* of the amplitudes

TRUTH

BEAUTY

Three Major Research Directions

1) Try to push loop calc as far as possible in a very controlled simple theory: "(planar) N=4 Super Yang Mills Theory" (SYM) (gluons, gluinos, scalars - all massless)

Goals: `Solve' theory at all loop order. Compact expressions? Understand why!

2) Adapt lessons from N=4 SYM to phenomenologically relevant theories to find new computational methods.

Goals: application to analysis of data from LHC and future particle experiments. New physics insights?

3) Use new methods to explore perturbative quantum gravity.

Goals: Point-particle quantum gravity perturbatively sensible? Gravity as (gauge theory)² Structure of string theory amplitudes

Three Major Research Directions

1) Try to push loop calc as far as possible in a very controlled simple theory: "(planar) N=4 Super Yang Mills Theory" (SYM) (gluons, gluinos, scalars - all massless)

Goals: `Solve' theory at all loop order. Compact expressions? Understand why!

2) Adapt lessons from N=4 SYM to phenomenologically relevant theories to find new computational methods.

Goals: application to analysis of data from LHC and future particle experiments. New physics insights?

3) Use new methods to explore perturbative quantum gravity.

Goals: Point-particle quantum gravity perturbatively sensible? Gravity as (gauge theory)² Structure of string theory amplitudes 1) Try to push loop calc as far as possible in a very controlled simple theory: "(planar) N=4 Super Yang Mills Theory" (SYM) (gluons, gluinos, scalars - all massless)

> Goals: `Solve' theory at all loop order. Compact expressions? Understand why!

Tree-level: all tree amplitudes in N=4 SYM solved via recursion.

Planar N=4 Super Yang Mills Theory and GEOMETRY

It turns out that amplitudes have a geometric interpretation.

```
Recursion relations => amplitude = sum of terms
```

Each of these terms can be interpreted as the volume of a 4-simplex

0-simplex = a point 1-simplex = line segment 2-simplex = triangle 3-simplex = tetrahedron.

Planar N=4 Super Yang Mills Theory and GEOMETRY

It turns out that amplitudes have a geometric interpretation.

Recursion relations => amplitude = sum of terms

Each of these terms can be interpreted as the volume of a 4-simplex

Just like a polygon can be triangulated in different ways for computation of its area, a polytope can be triangulated into simplices.

In this way, we can interpret the amplitude as the volume of polytope in a higher-dimensional space!! 0-simplex = a point
1-simplex = line segment
2-simplex = triangle
3-simplex = tetrahedron.

Planar N=4 Super Yang Mills Theory and GEOMETRY

It turns out that amplitudes have a geometric interpretation.

Recursion relations => amplitude = sum of terms

Each of these terms can be interpreted as the volume of a 4-simplex

Just like a polygon can be triangulated in different ways for computation of its area, a polytope can be triangulated into simplices.

In this way, we can interpret the amplitude as the volume of polytope in a higher-dimensional space!!

Three Major Research Directions

1) Try to push loop calc as far as possible in a very controlled simple theory: "(planar) N=4 Super Yang Mills Theory" (SYM) (gluons, gluinos, scalars - all massless)

> Goals: `Solve' theory at all loop order. Compact expressions? Understand why!

2) Adapt lessons from N=4 SYM to phenomenologically relevant theories to find new computational methods.

Goals: application to analysis of data from LHC and future particle experiments. New physics insights?

3) Use new methods to explore perturbative quantum gravity.

Goals: Point-particle quantum gravity perturbatively sensible? Gravity as (gauge theory)² Structure of string theory amplitudes

3) Use new methods to explore perturbative quantum gravity.

Point-particle quantum gravity is non-renormalizable.

So not a good theory of quantum gravity.

But what if the perturbation series were finite at each loop order?

3) Use new methods to explore perturbative quantum gravity.

Point-particle quantum gravity is non-renormalizable.

So not a good theory of quantum gravity.

But what if the perturbation series were finite at each loop order?

Is $\mathcal{N} = 8$ Supergravity Ultraviolet Finite?

Z. Bern^a, L. J. Dixon^b, R. Roiban^c (2007)

N=8 supergravity in 4d:

< 2007: 4-graviton 1,2,3-loop finite [Bern, Carrasco, Dixon, Johansson, 2009: 4-graviton 4-loop finite Kosower, Roiban (2007)+(2009)]

Done using generalized unitarity AND gravity as (gauge theory)²

3) Use new methods to explore perturbative quantum gravity.

Point-particle quantum gravity is non-renormalizable.

So not a good theory of quantum gravity.

But what if the perturbation series were finite at each loop order?

Is $\mathcal{N} = 8$ Supergravity Ultraviolet Finite?

Z. Bern^a, L. J. Dixon^b, R. Roiban^c (2007)

N=8 supergravity in 4d:

< 2007: 4-graviton 1,2,3-loop finite [Bern, Carrasco, Dixon, Johansson, Kosower, Roiban (2007)+(2009)]
 2010: all *n*-graviton amplitudes finite L<7 guaranteed by symmetries.

Used amplitude [Freedman, Kiermaier, HE; Kiermaier, HE; techniques to asses possible UV counterterms. No loops needed. Perturbative finiteness still an open question.

Summary

Modern on-shell methods for scattering amplitudes are incredibly powerful.

Applications in a wide range of problems:

- Pheno amplitudes
- Formal developments (mathematical structure, geometry)
- Quantum gravity
- Studies of formal aspects of QFT
- Non-renormalization theorems

and much more!

Textbook

Published by Cambridge University Press (2015)

(preview: arXiv:1308.1697)

Includes introductions to:

Spinor helicity formalism for Feynman diagrams.

On-shell recursion relations.

Supersymmetry applications.

Unitarity cuts and loops.

AND GRAVITY

and YU-TIN HUANG

Advanced subjects (Grassmannians, on-shell diagrams, polytopes, supergravity, supergravity = $(SYM)^2...$)

