

Overview

Many extensions of the Standard Model predict existence of new particles decaying into vector-boson pairs.

Few of them are used as benchmarks for heavy narrow resonance searches in di-boson final state by CMS.

- Bulk scenario of RS model
- spin-2 gravitons, spin-0 radions

Heavy spin-1 vector bosons.

- Heavy Vector Triplet (scenario B)
- spin-1 W'± and Z'

Final state with boosted V:

- ✓ WW, WZ, ZZ resonances
- ✓ WH and ZH resonances search
- ✓ HH resonances

Di-boson final states - map

Analysis Strategy at a Glance

Triggers

Σp_T jets Dijet mass Single Lepton

Boson reconstruction

Hadronic
Merged jets
Substructure

<u>Leptonic</u> Modified lepton isolation

Search for excess over the background

Narrow resonance search Well know detector resolution Few benchmark models are used to derive limits

Background estimates

From data
analytic fit function or
from side band

Di-boson invariant mass

Reconstructing boosted W/Z/H

Above W,Z(H) p_T >200(300) GeV quarks merge into R=0.8 jet

- ☐ Reconstruct W/Z/H with CA R=0.8 jet
- Pruned jet mass (arXiv:0912.0033)
 Better resolution by elimination soft, large angle radiation and
 - expected at W/Z/H mass

N-subjettiness (τ_2/τ_1) – provide additional discrimination. Should look like composed of two smaller jets

$$\tau_N = \frac{1}{d_0} \sum_{k} p_{T,k} \min \{ \Delta R_{1,k}, \Delta R_{2,k}, ..., \Delta R_{N,k} \}$$
 arXiv:1011.2268

✓ Calibrated in semi-leptonic ttbar sample containing real boosted
Ws.

Fully hadronic WW/WZ/ZZ

10.1007/JHEP08(2014)173

Trigger Σp_{T iets}>650 GeV OR dijet mass>750 GeV

Event selection: two R=0.8 jets with

|η1-η2|<1.3 (suppress QCD multijet background)

 $70 < m_{pruned} < 100 \text{ GeV to select both W and Z}$

 $\tau 2/\tau 1 < 0.5$ for highest purity, 0.5< $\tau 2/\tau 1 < 0.75$ for lower purity

Background estimation – fully hadronic

Background has a smooth distribution and can be described by a fit function

Performing simultaneously fit:

- signal yield and background parameters
- No need of detailed simulation for the background processes

Checks:

- ☐ Bias-test: How much is signal yield mis-fitted when fitting toy spectra of default fit function with alternative functional form
- ☐ *F-test:* Increase number of parameters until fit shows no significant improvement

Two bump hunts in HP and LP samples, like "classic" dijet search

- ➤ Randall-Sundrum gravitons
- A moderate excess (1.3σ) seen for M_{ii}≈2 TeV
 - √ no excess in HP
 - √ larger excess in LP

Semi-lepton background estimation

Using observable in signal-depleted sideband closely related to signal region

- Background rate+shape estimated from data in sideband, extrapolated to signal region using simulation
- ✓ Limited use of background simulation
- ✓ Uncertainties associated to extrapolation to signal region sometimes arbitrary

Checks:

- Closure test in simulation and/or other data sideband
- Cross-checked against the estimate from data with fit function for the background

Semi-lepton W(lv)W(qq)

10.1007/JHEP08(2014)174

Trigger: high p_T lepton: pT>80(40) GeV for $e(\mu)$ Reconstructed one W from one lepton and E_T^{miss} Second V reconstructed from V-tagged CA8 jet Categorize in purity based on $\tau 2/\tau 1$ W+jets background estimated from jet mass side-band ttbar control region

Semi-lepton Z(II)Z(qq)

Trigger two leptons: $p_T>33/33$ (22/8) GeV for $e(\mu)$ Reconstructed one Z from 2 leptons Second V reconstructed from V-tagged CA8 jet Categorize in purity based on $\tau 2/\tau 1$ Z+jets background estimated from jet mass side-band 10.1007/JHEP08(2014)174

Limits on spin-2 WW/ZZ resonances

10.1007/JHEP08(2014)174

Combined results for WW/ZZ searches at Vs = 8 TeV

Cross section and width related to coupling parameter k/M_{pl} (narrow <0.5) Narrow width for $k/M_{pl} \le 0.5$, Bulk Graviton model

Reconstructing H(bb)

Pruned jet mass is used as main discriminator

- Identify b-quark initiated jets with multivariate discriminant based on secondary vertices from B-hadron decay and associated tracks
- Modified b-tag algorithm 2 steps procedure
 - Sub-jet: Undo last iteration of jet clustering to obtain two subjets corresponding to the b-quarks from Higgs decay. If subjets angular separation is larger than 0.3, apply btagging on subjets. Otherwize:
 - ❖ Fat-jet: apply b-tagging on R=0.8 jet

Subjet b-tagging

V(qq)H(bb) resonances

arXiv:1506.01443

 \Box Using the same search techniques as V(qq)V(qq) search

Better S/B ratio due to better background rejection of H(bb)-tagger compared to W(qq)/Z(qq)-tagger

Reconstructed H→WW→qqqq

arXiv:1506.01443

H → WW → qqqq has second highest BR after H→ bb . Imposing the same requirement on the pruned jet mass selection as H->bb jets

> τ4/τ2 is the best discriminating variable between H->WW->qqqq jet (initiated from 4 partons) and quark/gluon/W/Z/H(bb) jets (initiated from 1 or 2 partons)

Since BR(H \rightarrow bb)>>BR(H \rightarrow WW \rightarrow qqqq), fraction of H->bb event failing b-tagging, but passing $\tau 4/\tau 2$ selection is non-negligible

Need to consider all possible Higgs decays simultaneously in the analysis

V(qq) H(WW->qqqq) resonances

arXiv:1506.01443

Exclusive search channel: Only events that fail H(bb) tagger Factor 4 less stringent limits on cross section than H(bb) channel Improves the sensitivity by 10% when combined with H(bb)

W(lv)H(bb) resonances

CMS EXO14010

The search techniques is the same as W(lv)V(qq) search Better background rejection of H(bb)-tagger compared to W(qq)/Z(qq)-tagger

✓ Excess in W(lv)H(bb) at 1.8 TeV has a local significance of 2.2 s.d. for combined electron and muon channel.

Reconstruction of H->ττ

Special reconstruction for the boosted tau pairs

- ✓ All-leptonic channel identify by electrons, muons and E_t^{miss} Isolation criteria exclude muons and electrons recover efficiency for the boosted $\tau\tau$ pair.
- ✓ Semi-leptonic channel modified isolation criteria for τ_h and electrons/muons.
- ✓ All-hadronic channel start with CA8-jets and apply subjetsearching techniques. Tau identification is applied on sub-jets.

✓ Higgs mass is reconstructed from visible tau decay products and missing transverse energy

Z(qq) H(ττ) resonances

10.1016/j.physletb.2015.07.011

- Events are divided in 6 categories
- Background predicted from data sidebands
 - ✓ Low jet mass window
 - ✓ Di-tau mass window below Z
- No excess observed

Limits on spin-1 WW/WZ/ZH/WH resonances

CMS EXO14010

❖ Heavy Vector Triplet model B (g_V = 3)

WV(lvqq), VV(qqqq) and VH(qqbb) have best sensitivity at high masses

H(bb)H(bb) resonances

CMS EXO12053

Trigger Σp_{Tiets}>650 GeV OR dijet mass>750 GeV

Require ≥3 **b-tagged** subjets in event

> If subjets closer than ΔR<0.3: Require b-tagged fatjet instead

Categorize in purity via $\tau 2/\tau 1$

Background estimate is intermediate approach between fitting background shape in signal region and estimation from sideband

Cross-check with low side band and pseudo-signal region (90<m_J<100GeV)

spin-0 HH resonances

CMS EXO12053

Extra dimension spin-0 radion (Λ_R =1 TeV) excluded around 1.2-1.5 TeV

This model is at edge of validity of narrow width approximation.

Summary

Searches for heavy resonances in di-boson final states have been performed with Run1 data with the CMS detector

- > direct probe for new physics at TeV scale
- > sensitivity is dramatically enhanced with dedicated jet substructure algorithms

No significant excess observed in data

❖ small deviations observed in different channels at ~1.8 TeV

Need Run II to clarify the interesting situation

Already the first few fb⁻¹ from Run2 can exceed the Run1 sensitivity for heavy resonances discovery in di-boson final states.