Status of Precision SM Higgs Cross Sections and Branching Ratio Calculations

Radja Boughezal

SUSY 2015, August 23-29, Lake Tahoe, California

The LHC circa 2012

July 4, 2012: a new member was added to the SM family !

Radja Boughezal, ANL

Precision Higgs Physics

The LHC circa 2015

Very good overall agreement between theory and experiment

LHC Run 2: prospects

• High expectations from the higher energy (13-14 TeV) and luminosity $(\sim 300 \text{ fb}^{-1})$

ATLAS Simulation Preliminary

 $\sqrt{s} = 14 \text{ TeV}: \left[\text{Ldt} = 300 \text{ fb}^{-1} ; \right] \text{Ldt} = 3000 \text{ fb}^{-1}$

Large impact from theory uncertainties (dashed) coming from QCD scale, jet binning, PDF+ α_s

Radia Boughezal, ANL

Precision Higgs Physics

LHC Run 2 & theory

ATLAS

	X			LY	
ATLA	S				
Source of uncertainty	4μ	$2e2\mu$	$2\mu 2e$	4e	combined
Electron reconstruction and identification efficiencies	_	1.7%	3.3%	4.4%	1.6%
Electron isolation and impact parameter selection	_	0.07%	1.1%	1.2%	0.5%
Electron trigger efficiency	_	0.21%	0.05%	0.21%	$<\!\!0.2\%$
$\ell \ell + ee$ backgrounds	_	_	3.4%	3.4%	1.3%
Muon reconstruction and identification efficiencies	1.9%	1.1%	0.8%	_	1.5%
Muon trigger efficiency	0.6%	0.03%	0.6%	_	0.2%
$\ell\ell + \mu\mu$ backgrounds	1.6%	1.6%	_	_	1.2%
QCD scale uncertainty					6.5%
PDF, α_s uncertainty					6.0%
$H \rightarrow ZZ^*$ branching ratio uncertainty					4.0%

LHC Run 2 & theory

ATLAS

	ATLA	S				_	
Source of uncertainty	$\underset{\text{Source}}{\text{H}} \rightarrow WW^*$	En	Observ ror	$\mu = 1.09$ Plot of error	е	4e	combined
Electron reconstruction and		+	_	(scaled by 100)	6	4.4%	1.6%
Electron isolation and impac	Data statistics	0.16	0.15)	6	1.2%	0.5%
Floctron trigger officioney	Signal regions	0.12	0.12		Z	0.91%	-0.9%
Electron trigger enciency	Profiled control regions	0.10	0.10		10	0.2170	0.270
$\ell\ell + ee$ backgrounds	Profiled signal regions	-	-	-	6	3.4%	1.3%
Muon reconstruction and ide	MC statistics	0.04	0.04	+	6	-	1.5%
Muon trigger efficiency	Theoretical systematics	0.15	0.12		6	1	0.2%
Much trigger enciency	Signal $H \rightarrow WW^* B$	0.05	0.04	+	0		1.007
$\ell\ell + \mu\mu$ backgrounds	Signal ggF cross section	0.09	0.07			·	1.2%
OCD scale uncertainty	Signal ggF acceptance	0.05	0.04	+			6.5%
DDE a un containty	Signal VBF cross section	0.01	0.01	<u>+</u>			C 007
FDF, α_s uncertainty	Signal VBF acceptance	0.02	0.01	•			0.0%
$H \rightarrow ZZ^*$ branching ratio up	Background W W	0.06	0.06	- T			4.0%
	Background misid factor	0.05	0.05	÷			
	Others	0.02	0.02	÷			
	Experimental systematics	0.07	0.06		-		
	Background misid, factor	0.03	0.03	+			
	Bkg. $Z/\gamma^* \to ee, \mu\mu$	0.02	0.02	+			
	Muons and electrons	0.04	0.04	+			
	Missing transv. momentum	0.02	0.02	+			
	Jets	0.03	0.02	÷.			
	Others	0.03	0.02	+	_		
	Integrated luminosity	0.03	0.03	+	_		
	Total	0.23	0.21		-		
				90 15 0 15 90			

LHC Run 2 & theory ATLAS

. *			y
TT.	ATLAS		-
Source of uncer Electron recons Electron isolati	tainty truction and P to truct in and P to truct in P	= 1.09 e of error ed by 100) 6 4	4e combine 4.4% $1.6%2%$ $5%2%$
$\frac{\ell\ell + ee \text{ back}}{\text{Muon recon}}$	Uncertainty group	$\sigma_{\mu}^{ m syst.}$.2% 3% 5%
Muon trigge $\ell\ell + \mu\mu$ bac	Theory (yield) Experimental (yield)	0.09 0.02	2 2% 2%
PDF, α_s un $H \rightarrow ZZ^*$ h	Luminosity	0.02	0% 0%
	MC statistics Theory (migrations)	< 0.01 0.03	
	Experimental (migrations)	0.02	
	Resolution	0.07)
	Mass scale	0.02	_
	Background shape	0.02	-

For the three 'precision' channels, theory uncertainty is the dominant source of systematic uncertainty !

Outline

- Theory uncertainties: overall signal normalization and differential distributions
- Resummation of jet veto logarithms
- PDF and parametric uncertainties
- Summary

Theory uncertainties: double trouble

• Two reasons for the dominance of theory uncertainties in Higgs physics

How well do we understand the overall signal normalization? There are famously large higher-order corrections!

How well can we describe the Higgs kinematics (differential distributions)? Need cuts to remove the sometimes overwhelming backgrounds.

Theory uncertainties: double trouble

• Two reasons for the dominance of theory uncertainties in Higgs physics

How well do we understand the overall signal normalization? There are famously large higher-order corrections!

How well can we describe the Higgs kinematics (differential distributions)? Need cuts to remove the sometimes overwhelming backgrounds.

Progress on both fronts needed to improve Higgs-signal modeling for Run II of the LHC, in addition to better control over PDFs and parametric uncertainties. Radja Boughezal, ANL Precision Higgs Physics

Overall Signal Normalization

Higgs production in gluon fusion at N³LO in QCD

• Calculation based on threshold expansion in $z = m_{\rm H}^2/\hat{s}$

• Threshold expansion stabilizes starting from N=4 (up to n=30 terms were included).

$\sigma/{ m pb}$	$2 { m TeV}$	$7 { m TeV}$	$8 { m TeV}$	$13 { m TeV}$	$14 { m TeV}$
$\mu = \frac{m_H}{2}$	$0.99^{+0.43\%}_{-4.65\%}$	$15.31^{+0.31\%}_{-3.08\%}$	$19.47^{+0.32\%}_{-2.99\%}$	$44.31^{+0.31\%}_{-2.64\%}$	$49.87^{+0.32\%}_{-2.61\%}$
$\mu = m_H$	$0.94^{+4.87\%}_{-7.35\%}$	$14.84^{+3.18\%}_{-5.27\%}$	$18.90^{+3.08\%}_{-5.02\%}$	$43.14^{+2.71\%}_{-4.45\%}$	$48.57^{+2.68\%}_{-4.24\%}$

Anastasiou, Duhr, Dulat, Herzog, Mistlberger (2015)

Higgs production in gluon fusion at N³LO in QCD

Anastasiou, Duhr, Dulat, Herzog, Mistlberger (2015)

- An additional 2.2% correction for $\mu_F = \mu_R = m_H/2$ w.r.t. NNLO
- Uncertainties from missing higher order corrections reduced down to $\sim 3\%$.

Higgs production in gluon fusion at N³LO in QCD

- Things observed from the N³LO result for $\mu = m_H/2$:
 - + Reduced scale uncertainty compared to $\mu = m_H$
 - Better convergence of the perturbative series
 - Negligible impact of soft-gluon resummation

• Other sources of uncertainties of a comparable size to N³LO:

- ◆ 1/m_{top} corrections @ NNLO: small, agree within 1% with EFT (Harlander, Mantler, Marzani, Ozeren)
- Bottom quark effects: unknown beyond NLO, could be few percent
- PDF + α_s : ~ 2-3% with the latest PDF sets (2015)
- NLO EW corrections: leads to 5% if we assume complete factorization (Djouadi, Gambino, Kniehl; Aglietti, Bonciani, Degrassi; Degrassi, Maltoni;

Anastasiou, RB, Petriello; Actis, Passarion, Sturm, Uccirati)

$$\sigma_0 \left(1 + \delta_{QCD} + \delta_{EW}\right) \qquad vs \qquad \sigma_0 \left(1 + \delta_{QCD}\right) \left(1 + \delta_{EW}\right)$$

Missing higher order QCD

Comparison to approximate N³LO

Duhr, Higgs Hunting 2015

Higgs Kinematics and Differential Distributions

Higgs in association with jets

- Selection of experimental events in H → WW uses jet binning to reduce the background.
- Theory uncertainties in the 1-jet and 2-jet bins are currently a limiting factor.
- Looking for BSM effects would benefit from a better precision control of the differential distributions, eg. Higgs p_T (Banfi, Martin, Sanz, 2013; Azatov, Paul 2013)
- Precise exclusive results are also needed to separate between gluon fusion and vector boson fusion

Higgs+jet @ NNLO in QCD using jettiness

R.B., Giele, Focke, Liu, Petriello, 2015

- First complete NNLO result. Uses jettiness subtraction method
- \bullet Non-trivial K-factor shape as a function of p_{Tj} and p_{TH} while flat as a function of Y^{jet}
- Good perturbative behavior and smaller uncertainties for all differential distributions
- Ready to compare with 13 TeV data!

Higgs + 1 jet @ NNLO using sector-improved residue subtraction

• Greatly reduced theoretical errors for the inclusive cross section

R.B., Caola, Melnikov, Petriello, Schulze, 2015

Finite top mass effects in H+1j @ NLO

- The infinite top-mass limit was shown to work well up to $p_{TH} \le 150 GeV$ (Harlander, Neumann, 2013).
- Can go beyond the infinite top-mass limit @ NLO to get improved SM prediction for $p_{TH} \ge 150 GeV$

$$\mathcal{L}_{\text{eff}} = \hat{C}_1 O_1 + \frac{1}{\Lambda^2} \Sigma_{i=2,3,4,5} \hat{C}_i O_i + \mathcal{O}\left(\frac{1}{\Lambda^4}\right) \quad (\text{in SM}, \Lambda = m_{\text{top}})$$

$$O_{1} = G_{\mu\nu}^{A} G^{\mu\nu,A} h \quad \text{dim. 5, SM operator}$$

$$O_{2} = D_{\sigma} G_{\mu\nu}^{A} D^{\sigma} G^{A,\mu\nu} h$$

$$O_{3} = f_{ABC} G_{\nu}^{A,\mu} G_{\sigma}^{B,\nu} G_{\mu}^{C,\sigma} h$$

$$O_{4} = g_{s}^{2} \Sigma_{i,j=1}^{n_{lf}} \overline{\psi}_{i} \gamma_{\mu} T^{A} \psi_{i} \overline{\psi}_{j} \gamma^{\mu} T^{A} \psi_{j} h$$

$$O_{5} = g_{s} \Sigma_{i=1}^{n_{lf}} G_{\mu\nu}^{A} D^{\mu} \overline{\psi}_{i} \gamma^{\nu} T^{A} \psi_{i} h,$$

$$dim. 7$$
operators

Precision Higgs Physics

Finite top mass effects in H+1j @ NLO

• Some higher dimensional operators can have large QCD corrections. If enhanced by BSM effects, can dramatically shift the SM prediction.

$$\mathcal{L}_{\text{eff}} = \hat{C}_1 O_1 + \frac{1}{\Lambda^2} \Sigma_{i=2,3,4,5} \hat{C}_i O_i + \mathcal{O}\left(\frac{1}{\Lambda^4}\right)$$

(in BSM, Λ is the scale at which contributions to Ci are generated)

operators with the largest effect:

dim. 5, SM operator $O_1 = G^A_{\mu\nu} G^{\mu\nu,A} h$ $O_3 = f_{ABC} G^{A,\mu}_{\nu} G^{B,\nu}_{\sigma} G^{C,\sigma}_{\mu} h$ $O_5 = g_s \Sigma_{i=1}^{n_{lf}} G^A_{\mu\nu} D^\mu \overline{\psi}_i \gamma^\nu T^A \psi_i h$

dim. 7 operators

Precision Higgs Physics

VBF @ NNLO in QCD

• VBF: second largest production mode at the LHC

- Offers direct access to VVH
- Possibility to disentangle ggH from VBF through VBF radiation pattern (VBF cuts)

• Inclusive VBF@NNLO known in the structure function approach (2loop virtuals unknown for the $2 \rightarrow 3$ process) Bolzoni, Maltoni, Moch, Zaro

- Structure function approach: no color exchange between the two quark lines
 - Exact at NLO
 - $-VBF = (DIS)^2$
- Small Corrections for the inclusive case:
 1-2%

VBF @ NNLO in QCD

- Inclusive cross section insufficient: need differential distributions to impose VBF cuts
- NNLO differential VBF became available recently using the structure function approach (Cacciari, Dreyer, Karlberg, Salam, Zanderighi)

Central scale choice:

$$\mu_0^2(p_{t,H}) = \frac{M_H}{2} \sqrt{\left(\frac{M_H}{2}\right)^2 + p_{t,H}^2}$$

• NNLO corrections outside the NLO band after VBF cuts

13TeV, anti-KT, R=0.4, NNPDF

VBF @ NNLO in QCD

NLO+parton shower agrees well with NNLO for P_{TH} but not for $\Delta y_{j1,j2}$

Non trivial kinematic dependence of the K-factors

Jet binning and the Higgs

• For many important processes we require resummation to NNLL and beyond matched to high-precision fixed-order.

• Important example: jet vetoes for Higgs in the WW channel.

• Incomplete cancellation of IR divergences in presence of final state restrictions gives large logarithms of restricted kinematic variable

- Relevant log term for gluon-fusion Higgs searches: $6(\alpha_S/\pi)\ln^2(M_H/p_{T,veto}) \sim 1/2$
- We need to resum these terms; they are a large source of systematic uncertainty in this channel!

Resummation of jet veto logarithms

- Resummation of jet-veto logarithms in Higgs physics is a very active area
- H+0-jets in gluon fusion (Banfi, Monni, Salam, Zanderighi; Becher, Neubert; Stewart, Tackmann, Walsh, Zuberi)
 - H+1-jet in gluon fusion (Liu, Petriello)
- Combination of the 0+1-jet bins (R.B., Liu, Petriello, Tackmann, Walsh)
- Associated VH production with a jet veto (Li,Liu)

Resummation of jet veto logarithms

• Can combine the resummation of the zero-jet and one-jet bins into a complete resummation of the global logarithms affecting the Higgs signal in gluon fusion R.B., Liu, Petriello, Tackmann, Walsh (2014)

• Greatly reduced uncertainties in all three bins used in the analysis

- Leads to a complete covariance matrix for experimental use
- Can translate into a reduced uncertainty in the signal-strength extraction:

 $(\Delta \mu/\mu)_{old} = 13.3\%$ $(\Delta \mu/\mu)_{new} = 6.9\%$

Nearly a factor of 2 reduction in the theory uncertainty affecting the WW channel!

Radja Boughezal, ANL

Precision Higgs Physics

Effect of PDFs and Parametric Uncertainties on Higgs Precision

NNLO PDF uncertainties

pre-2015

- Not so nice convergence of gg PDF luminosities around 125GeV at 8TeV
- PDF+ α_s error dominate the theory uncertainty

±7% at a 13 TeV LHC

NNLO PDF uncertainties

- Much nicer convergence for new generations of PDFs (updated HERA data included).
- PDF uncertainty on Higgs production down to about 2%
- New recommendations: conservative envelope no longer needed, PDF and α_s uncertainties to be kept separate (combine in quadrature if needed), PDFs delivered for each value of $\alpha_{s.}$

Higgs branching ratios

Perturbative uncertainties, M. Spira, HXSWG meeting July 2015						
Partial Width	QCD	Electroweak	Total	on-shell Higgs		
$H \to b \overline{b} / c \overline{c}$	$\sim 0.1\%$	\sim 1–2% for $M_H \lesssim$ 135GeV	$\sim 2\%$	NNNNLO / NLO		
$H \to \tau^+ \tau^- / \mu^+ \mu^-$		\sim 1–2% for $M_H \lesssim$ 135GeV	$\sim 2\%$	NLO		
$H \to t \overline{t}$	\lesssim 5%	\lesssim 2–5% for $M_H <$ 500GeV	$\sim 5\%$	(NNN)NLO / LO		
		$\sim 0.1 (rac{M_H}{1{ m TeV}})^4$ for $M_H > 500{ m GeV}$	\sim 5–10%			
$H \rightarrow gg$	\sim 3%	$\sim 1\%$	\sim 3%	NNNLO approx. / NLO		
$H \to \gamma \gamma$	< 1%	< 1%	$\sim 1\%$	NLO / NLO		
$H \to Z\gamma$	< 1%	$\sim 5\%$	$\sim 5\%$	(N)LO / LO		
$H \to WW/ZZ \to 4f$	< 0.5%	\sim 0.5% for $M_H <$ 500GeV	$\sim 0.5\%$	(N)NLO		
		$\sim 0.17 (rac{M_H}{1 { m TeV}})^4$ for $M_H > 500 { m GeV}$	\sim 0.5–15%			

- Theory scale uncertainties under good control for most Higgs decays except H $\rightarrow Z\gamma$ (~5%)
- Parametric uncertainties also need improvements: current values adapted by the Higgs cross section working group

$m_t = 172.5 \pm 2.5$ GeV	$\alpha_s(M_Z) = 0.119 \pm 0.002$
$m_b(m_b) = 4.16 \pm 0.06 { m GeV}$	$m_c(m_c)=1.28\pm0.03$ GeV

Parametric uncertainties

- Parametric and theory uncertainties are added linearly
- Current PDG uncertainty, in particular for α_s felt to be a bit aggressive. Suggested value: $\Delta \alpha_s = 0.001-0.0015$ (S. Forte, HXSWG meeting July 2015).
- It was suggested that lattice could help reduce the parametric uncertainties (Lepage, Mackenzie, Peskin)

Higgs Snowmass report 2013

Table 1-4. Uncertainties on $M_H = 126$ GeV Standard Model branching ratios arising from the parametric uncertainties on α_s , m_b , and m_c and from theory uncertainties [7, 6].

Decay	Theory Uncertainty	Parametric Uncertainty	Total Uncertainty	Central Value
			on Branching Ratios	
	(%)	(%)	(%)	
$H \to \gamma \gamma$	± 2.7	± 2.2	± 4.9	$2.3 imes10^{-3}$
$H \rightarrow b\overline{b}$	± 1.5	± 1.9	± 3.4	$5.6 imes10^{-1}$
$H \rightarrow c\overline{c}$	± 3.5	± 8.7	± 12.2	$2.8 imes 10^{-2}$
$H \to gg$	± 4.3	± 5.8	± 10.1	$8.5 imes10^{-2}$
$H \rightarrow \tau^+ \tau^-$	± 3.5	± 2.1	± 5.6	$6.2 imes 10^{-2}$
$H \to WW^*$	± 2.0	± 2.1	± 4.1	$2.3 imes10^{-1}$
$H \to Z Z^*$	± 2.1	± 2.1	± 4.2	$2.9 imes 10^{-2}$
$H \rightarrow Z \gamma$	± 6.8	± 2.2	± 9.0	$1.6 imes 10^{-3}$
$H \to \mu^+ \mu^-$	± 3.7	± 2.2	± 5.9	$2.1 imes 10^{-4}$

QCD Snowmass report 2013

	Higgs X-section	PDG [2]	Non-lattice	Lattice	Lattice	Targets of
	Working Group [26]			(2013)	(2018)	$\rm ILC/TLEP/LHeC$
$\delta \alpha_s$	0.002	0.0007	0.0012 [2]	0.0006 [35]	0.0004	0.0001 – 0.0006 $[10, 11, 23]$
$\delta m_c \ ({\rm GeV})$	0.03	0.025	0.013 [39]	0.006 [35]	0.004	-
$\delta m_b \ ({\rm GeV})$	0.06	0.03	0.016 [39]	0.023 [35]	0.011	-

Radja Boughezal, ANL

Precision Higgs Physics

Summary

- We've observed what looks like a SM Higgs. More work needed to sharpen the Higgs picture and dig out possible new physics signals out of the overwhelming background.
- Significant improvements of theory uncertainties in the last couple of years; we've witnessed the completion of several important precision predictions in the last few months: ggH@N³LO, and fully differential NNLO results: Higgs+jet, VBF.

Summary

Science & Environment

LHC restart: 'We want to break physics'

Summary

Easter morning excitement as the CERN accelerator team send beams around the LHC for the first time in many months - a major milestone on the way to even higher energy collisions!

(05-Apr-2015 10:40:17)

All collima

Circulati

BBC

NEV

 U.S.
 World
 Politics
 Tech
 Health
 Entertainment
 Living
 Travel
 Money
 Sports

 Image: World State
 Image: Weight State

physics experiment restarts

SOURCE NEWS HOME TOP VIDEOS ONGOING: BOSTON BOMBING TRIAL CALIFORNIA DROUGHT

U.S. WORLD LOCAL POLITICS HEALTH TECH SCIENCE POP CULTURE BUSINESS INVESTIGATIONS SPORTS

News Video TV Opinions More ...

Lets hope for more headlines soon !

Science 8

Secti

LHC restart: 'We want to break physics'

Radja Boughezal, ANL

NIGHTLY NEWS TODAY