

Higgs Boson & Flavors at the ATLAS & CMS Experiments

SUSY 2015, August 29, 2015 Hideki Okawa (University of Tsukuba) on behalf of ATLAS & CMS Collaborations

• We have discovered a Higgs boson in 2012. So far, the particle shows properties consistent with the Standard Model (→Attilio Andreazza's talk).

However, current constraints on the Higgs total width is rather loose: <~5×ГнSM & there is still room for BSM decays.

m₄₁ [GeV]

- We are at the stage to further investigate & understand the properties of the Higgs boson/Yukawa couplings, and the electroweak sector as a whole.
- I will present an overview of such studies from a flavor perspective in particular.

Tristan du Pree will cover the other BSM decays.

20

30

40

50

60

Г_н (MeV)

10

Outline

→ Dai

talk

Kobayashi's

• Lepton Flavor Violation (LFV)

- $H \rightarrow \mu \tau_e, e \tau_{\mu}, e \tau_h, e \mu$ (CMS), $H \rightarrow \mu \tau_h$ (ATLAS, CMS)
- Z→eµ (ATLAS, CMS)
- $Z', \widetilde{v}_{\tau} \rightarrow e\mu, e\tau, \mu\tau$ (ATLAS), $e\mu$ (CMS)
- Ζ′→ττ (ATLAS)
- $W' \rightarrow \tau v_{\tau}$ (CMS)
- RPV $\tilde{t} \tilde{t}^* \rightarrow b \ell b \ell$ (ATLAS)
- Flavor Changing Neutral Currents (FCNC)
 - $t \rightarrow qH(\rightarrow \gamma \gamma)$ (ATLAS, CMS)
 - $t \rightarrow qH(\rightarrow multi-lepton) \& combination (CMS)$
- Light-flavor Yukawa couplings
 - H→ee (CMS), μμ (ATLAS, CMS)
 - $H \rightarrow J/\psi\gamma$ (ATLAS, CMS), $\Upsilon(nS)\gamma$ (ATLAS)
- Run-2 Prospects

- MFV dark matter search (mono-b)
 → Priscilla Pani's talk
 - $t \rightarrow qZ, q\gamma$ (ATLAS, CMS)
 - BSM single top (ATLAS, CMS)
 - → Sridhara Dasu's & Sandro Palestini's talks

Zoo

Flavor Violation

R.Harnik, J.Kopp, J.Zupan, JHEP 03 (2013) 026

$$\mathcal{L}_Y = -m_i \bar{f}_L^i f_R^i - Y_{ij} (\bar{f}_L^i f_R^j) h + h.c. + \cdots,$$

Higgs-fermion coupling

- Standard Model Higgs boson conserves the flavor symmetry (Y_{ij} is diagonal).
- In general, Y_{ij} can be non-diagonal, which leads to a flavor violation.
 Flavor violation itself would be a discovery of BSM physics.
 - Naturally occurs in models with more than one Higgs doublet.
 - Can arise in SUSY, composite Higgs models, Randall-Sundrum, etc.

H→µT,eT,eµ Searches

• Indirect constraints from previous experiments are stringent for $\mu \rightarrow e$, but <u>rather</u> moderate for τ -related FV. $\Rightarrow BR(H \rightarrow \mu e) < O'(10^{-8}), BR(H \rightarrow \mu \tau, e\tau) < O'(10\%).$

CMS-PAS-HIG-14-005

- Similar signatures as the SM H→ TT, but with a prompt/higher-pT muon & different Missing ET event topologies.
- Similar selections/strategies between CMS & ATLAS for H→μτ_h. Some differences in the kinematic cuts, jet binning & mass reconstruction (collinear vs Missing Mass Calculator).

$H \rightarrow \mu T_e$ Channel

Phys. Lett. B 749 (2015) 337

• Dominant BG $\Rightarrow Z \rightarrow \tau_{\mu}\tau_{e}$, mis-ID leptons, dibosons. $Z \rightarrow \tau_{\mu}\tau_{e}$ estimated from embedding technique from $Z \rightarrow \mu\mu$ ($Z \rightarrow \mu\mu$ data with μ 's replaced by simulated τ decays.)

•	Data agree with the expectation within uncertainty.			1-jet	2-jets
		sum of backgrounds	160 ± 19	118 ± 9	5.6 ± 0.9
		LFV Higgs boson signal	23 ± 6	13 ± 3	1.2 ± 0.3
		data	180	128	6

Hideki Okawa

SUSY 2015, August 29, 2015

$H \rightarrow \mu T_e, \mu T_h$ Results

- Slight excess of **2.4\sigma significance** is observed in CMS (1.3 σ in ATLAS).
- Best fit BR(H \rightarrow µT) = 0.84^{+0.39}-0.37% [CMS], 0.77±0.62% [ATLAS]
- Limit: BR(H→μτ) < 1.51% obs (0.75% exp) [CMS], 1.85% (1.24%) [ATLAS]@95%CL

H→er,eµ Results

- No excess observed in $H \rightarrow e\tau_{\mu}, e\tau_{h}$, $e\mu$ channels for all categories.
 - BR(H→ет) < 0.70%@95%CL. Best fit -0.10.
- BR(H→eµ) < 0.036%@95%CL.

Z→eµ Search

• Indirect limits: BR(Z \rightarrow eµ) < 10⁻¹² (µ \rightarrow 3e), 10⁻¹⁰ (µ \rightarrow eγ)

- Require low E_T^{miss} & veto jets to suppress the $Z \rightarrow \tau \tau$, diboson, and ttbar BGs.
- Dominant BG: $Z \rightarrow \tau \tau$.
- BR(Z \rightarrow eµ) < 7.5 × 10⁻⁷ (ATLAS), 7.3 × 10⁻⁷ (CMS) @ 95%CL. Surpassing the previously most stringent direct limit from LEP (< 1.7 × 10⁻⁶).

Phys. Rev. D 90, 072010 (2014), CMS-PAS-EXO-13-005

Z′→eµ,eт,µт Search

 $q \qquad \qquad \ell'$ $\overline{q} \qquad \qquad \overline{q} \qquad \qquad \overline{\ell}$

19.7 fb⁻¹ (8 TeV) Events / 10 GeV CMS 10⁴ Preliminarv WW DY 10³ jets tW eU Wγ WZ. ZZ 10 + data 10 10⁻² 10⁻³ 200 400 600 800 1000 1200 1400 1600 M_{eu} (GeV) Ratio data/MC 2.5

Phys. Rev. Lett. 115, 031801 (2015), CMS-PAS-EXO-13-002

- Search for LFV motivated from RPV SUSY models, LFV Z', and quantum black holes.
- Bump hunting for opposite-sign different-flavor dileptons (eµ, eτ, μτ for ATLAS; eµ for CMS).
- Collinear neutrino approximation considered for mass reconstruction in eτ/μτ channels.

 $Z' \rightarrow e\mu, et, \mu t$ Results

- Limits placed on RPV SUSY, LFV Z', or quantum BH production times branching ratio.
- These results significantly extend constraints from previous results from the Tevatron & LHC.

2500

n=0

- n=3 n=4 • n=5 - n=6

n=1 (PDG) n=1 (RS) • n=2

M_{th} (GeV)

10²

10

10-

10⁻² <u></u>−2

CMS

Preliminary

1000 1500 2000 2500 3000 3500 4000 4500

Z′→тт Search

JHEP 07 (2015) 157

- Non-universal lepton couplings to Z' can explain_observed flavor anomalies.
 (e.g. anomalous dimuon production@D0, excess of B→D^(*)τ⁻v_τ@BaBar, Belle)
- $\tau_{had}\tau_{had}$, $\tau_{\mu}\tau_{had}$, $\tau_{e}\tau_{had}$ channels are considered.
- Main BGs: $Z \rightarrow \tau \tau$, multijet for $\tau_{had} \tau_{had} \& Z \rightarrow \tau \tau$, W+jets for $\tau_{\mu} \tau_{had}$, $\tau_{e} \tau_{had}$.
- No excess observed. Stronger constraints on the G(221) [SU(2)×SU(2)×SU(1)] parameter space than the indirect limits from LEP & CKM unitarity.

W'→ tv Search

arXiv:1508.0430

- First search for W' decaying to $\tau_{had} \& v_{\tau}$. Decays to 3rd generation could be enhanced in case of non-universal coupling.
- Main BGs: $W \rightarrow \tau v_{\tau}$, multijet.
- Significantly expanding the limits for large $\cot \theta_{E}$.

800 (IN) B(N) 0.7 700 🕛 t+b 0.6 0.5 0.4⊢<u></u> u+d/ 400 0.3 300 200 0.2 0.1 100 WH 10 6 5 3 4 $\cot \theta_{\rm E}$ 19.7 fb⁻¹ (8 TeV) $\theta_{\rm E}$ CMS cot Limits at 95% CL CMS W' $\rightarrow \tau v$ Lepton flavor violation ··· CKM unitarity - W' → tb $W' \rightarrow e_{\lambda}$ 1000 2000 2500 1500

0.8

cot θ_E : mixing of

two extended SU(2)

groups.

M_{w'} [GeV]

RPV Stop Search

ATLAS-CONF-2015-015

- RPV SUSY model w/ spontaneously broken local U(1)_{B-L} symmetry.
 Only lepton number is violated.
- eebb,eµbb,µµbb final states considered.
- H_T >1100 GeV, m_{bl} asymmetry \leq 0.2, Z veto on higher m_{bl} (m_{bl}^0).

SUSY 2015, August 29, 2015

18

FCNC t \rightarrow qH(\rightarrow yy) Search

JHEP 06 (2014) 008, CMS-PAS-TOP-14-019

Backgrounds

- Leptonic channel: non-resonant γγ production, multijet, ttbar, Wγ, real Higgs decay.
- Hadronic channel: non-resonant γγ production, multijet, real Higgs decay.

Seach for flavor-changing neutral currents in top decays using ttbar processes. Look for peak at γγj invariant mass & Wj (leptonic + hadronic channels).

$t \rightarrow qH(\rightarrow \gamma \gamma)$ Results

JHEP 06 (2014) 008, CMS-PAS-TOP-14-019

Hideki Okawa

SUSY 2015, August 29, 2015

t→qH(→multilepton) & Combination

- Used same-sign dilepton & trilepton SRs.
- BR(t→cH) < 0.93% obs (0.89% exp)
- $\sqrt{(\lambda_{tcH}^2 + \lambda_{tuH}^2)} < 0.18$
- Combination w/ γγ channel leads to BR(t→cH) < 0.56% & √(λ_{tcH}²+λ_{tuH}²) < 0.14

CMS-PAS-HIG-13-017, CMS-PAS-HIG-13-034

SUSY 2015, August 29, 2015

Light-Flavor Yukawa Couplings

Light-Flavor Yukawa Couplings

- Yukawa couplings are among the most arbitrary in the electroweak symmetry breaking mechanism.
- Light-flavor lepton/quark couplings to the Higgs boson provide useful insights to the nature of the Yukawa couplings.
 - Universal or non-universal Higgs couplings to fermions.
 - Decays to a quarkonium & γ ("exclusive approach"; cf. E.Stamou's talk) may offer sensitivity to both magnitude & sign of the Yukawa couplings.
 - Probe for physics beyond the Standard Model.

H→µµ

Phys. Lett. B 738 (2014) 68, Phys. Lett. B 744 (2015) 184

19.7 fb⁻¹ (8 TeV) H→μ⁺μ΄ 100 10¹⁰ Events/1.0 GeV Events / 2 Ge/ 0,1-Jet Tight BB --- Data CMS ggF & VBF categories - ΗC (stat TLAS 10⁹ WZ/ZZ/Wγ Z/γ $= 7 \text{ TeV} \int \text{Ldt} = 24.8 \text{ fb}^{-1}$ 800 Background model tī WW 10⁸ Single Top 📃 W+jet SM Higgs boson × 20 🗖 H [125 GeV 10^{7} 60 Analytic BG modeling 10⁶ 10^t 400 similar to $\gamma\gamma$ channel. 10⁴ 200 10^{3} 10^{2} 10 2/NDF = 45.7/48 = 0.953; p-value: 0.56 Data-Fit ^{0_{Fit}} 10 100 120 140 160 180 200 220 240 260 80 110 120 130 140 150 160 m_{uu} [GeV] *m*_{μ⁺μ⁻} [GeV] 95% CL limit on $\mu_{\rm S}$ $\sigma \times BR < 7.0$ obs (7.2 exp) ($\sigma \times BR$)_{SM} $H \rightarrow \mu^+ \mu^-$ ATLAS 50 $\sqrt{s}=7 \text{ TeV} 4.5 \text{ fb}^{-1}$ [ATLAS], **7.4 (6.5) (σ × BR)**_{SM} [CMS] - Observed CL √s=8 TeV 20.3 fb⁻¹ ···· Expected CL 40 ± **1**σ ± **2**σ **Confirmed non-universal couplings** 30 same as the t-lepton). 20 Need HL-LHC data for measuring the 10 SM $H \rightarrow \mu \mu$ process (Adrian Perieanu's talk). 0 150 120 125 130 135 140 145 m_H [GeV]

H→ee

- SM BR(H \rightarrow ee)~5×10⁻⁹. 19.7 fb⁻¹ (8 TeV) $H \rightarrow e^+e^-$ [qd] (-0.14 (-0.12 Inaccessible at the LHC. CMS Observed limit -- Median expected limit 19.7 fb⁻¹ (8 TeV) 19.7 fb⁻¹ (8 TeV) $H \rightarrow e^+e^-$ H → e⁺e 4000 $\pm 1\sigma$ expected limit Events/1.0 GeV Events/2.0 GeV Т 0.1 0,1-jet BB -- Data CMS CMS 2-jet Tight ---- Data 3500 25 $\pm 2 \sigma$ expected limit Background model Background model 3000 20 SM Higgs boson × 10⁶ SM Higgs boson × 10⁶ 2500 2000 15 1500 10 1000 500 = 13.1/23 = 0.567; p-value: 0.95 <u>Data-Fit</u> ^{0_{Fit}} Data-Fit ^{0_{Fit}} -110 110 120 130 140 150 160 120 130 140 150 160 120 130 150 140 m_{ee} [GeV] m_{ee} [GeV] m_H [GeV]
- ggF & VBF categories. Using analytic BG modeling.
- No excess from SM expectation. BR($H \rightarrow ee$)<1.9×10⁻³ @95% CL.
- Another confirmation of non-universal couplings of the Higgs boson.

SUSY 2015, August 29, 2015

$H/Z \rightarrow J/\psi \gamma$, Y(nS) γ

0.1 p^µ_T

0.06

0.04

- SM BR(H \rightarrow J/ $\psi\gamma$)=2.8×10⁻⁶, Events/2 GeV 80'0 BR(H \rightarrow Y(nS) γ)=(6.1,2.0,2.4)×10⁻¹⁰
- Considered $\mu^+\mu^-\gamma$ final state.
- Signal efficiency [ATLAS]: 22% for J/ $\psi\gamma$, 28% for Y(nS) γ

- Simultaneous fits are performed to $m_{\mu\mu\gamma} \& m_{\mu\mu}$ for ATLAS and to $m_{\mu\mu\gamma}$ for CMS.
- No significant H/Z $\rightarrow Q\gamma$ signals are observed.

3.4 3.5

$H/Z \rightarrow J/\psi \gamma$, Y(nS) γ

- Interesting analyses, but challenging for the SM $H \rightarrow J/\psi\gamma$, $\Upsilon(nS)\gamma$ due to the very low expected yields, even at the HL-LHC.
- However, the method can also be used for general $H \rightarrow Q\gamma$, where Q is a meson from light quarks. It provides interesting programs for BSM search.

Prospects for Run-2

Run-2 Prospects

- Lepton flavor violation
 - CMS (H→μτ_e, μτ_h, etc.): New τ-reconstruction algorithm developed for Run-2.
 - Z'→eµ: Already started looking at m_{eµ} distribution. Will make use of the significantly increased cross section in 13 TeV.
- Flavor changing neutral current
 - Will benefit from enhanced production of the ttbar process. First ttbar cross section measurements were performed w/ 13 TeV data by ATLAS/CMS (ATLAS-CONF-2015-033, CMS-PAS-TOP-15-010).

Analyses are progressing rapidly with the Run-2 data.

Summary

- LHC provides rich program for flavor studies.
- Understanding the Yukawa couplings of the Higgs boson is crucial after the discovery of a Higgs boson, and there could be flavor violating processes in the electroweak sector.
- No observation of charged lepton flavor violation so far. However, there is 2.4σ (1.3σ) excess in the H→μτ from CMS (ATLAS). Further investigations are ongoing.
- We had fruitful results regarding the light-flavor Yukawa couplings as well. No sign of deviations from the Standard Model so far.
- Analyses are rapidly progressing with Run-2 data!!

backups

Higgs Signal Strength

13 vs 8 TeV

CMS

H→µT Search

Phys. Lett. B 749 (2015) 337, arXiv:1508.03372

• Some differences in the kinematic selections ($\Delta \phi_{\mu,\tau}$, $\Delta \eta_{\mu,\tau}$) & discriminating variable (mass reconstruction w/ collinear approximation vs Missing Mass Calculator).

Variable	ŀ	$H \to \mu \tau$	-e	$H \rightarrow \mu \tau_h$		ĥ
[GeV]	0-jet	1-jet	2-jet	0-jet	1-jet	2-jet
$p_{\rm T}^{\mu} >$	50	45	25	45	35	30
$p_{\mathrm{T}}^{\mathrm{e}} >$	10	10	10			
$p_{ m T}^{ au} >$				35	40	40
$M_{ m T}^{ m e} <$	65	65	25			—
$M^{\mu}_{ m T} >$	50	40	15			
$M_{ m T}^{ au} <$				50	35	35
[radians]						
$\Delta \phi_{\vec{p}_{\rm T}^{\mu} - \vec{p}_{\rm T}^{\tau_{\rm h}}} >$				2.7		
$\Delta \phi_{ec{p}_{ m T}^{ m e}-ec{E}_{ m T}^{ m miss}} < 1$	0.5	0.5	0.3		—	
$\Delta \phi_{\vec{p}_{\rm T}^{\rm e} - \vec{p}_{\rm T}^{\mu}} >$	2.7	1.0				

ATLAS

Cut	SR1	SR2
$p_{\mathrm{T}}(\mu)$	>26 GeV	>26 GeV
$p_{\mathrm{T}}(au_{\mathrm{had}})$	>45 GeV	>45 GeV
$m_{\rm T}(\mu, E_{\rm T}^{\rm miss})$	>40 GeV	<40 GeV
$m_{\rm T}(\tau_{\rm had}, E_{\rm T}^{\rm miss})$	<30 GeV	<60 GeV
$ \eta(\mu) - \eta(\tau_{had}) $	<2	<2
$N_{\rm jet}$	_	—
N _{b-jet}	0	0

$H \rightarrow \mu \tau$ Channel (CMS)

Phys. Lett. B 749 (2015) 337

Variable	ŀ	$H \to \mu \tau$	-e	$H \rightarrow \mu \tau_h$		ħ
[GeV]	0-jet	1-jet	2-jet	0-jet	1-jet	2-jet
$p_{\rm T}^{\mu} >$	50	45	25	45	35	30
$p_{\mathrm{T}}^{\mathrm{e}} >$	10	10	10			
$p_{\mathrm{T}}^{\overline{ au}} >$				35	40	40
$M_{ m T}^{ m e} <$	65	65	25			
$M_{ m T}^{ar{\mu}} >$	50	40	15			
$M_{ m T}^{ au} <$				50	35	35
[radians]						
$\Delta \phi_{\vec{p}_{\rm T}^{\mu} - \vec{p}_{\rm T}^{\tau_{\rm h}}} >$				2.7		
$\Delta \phi_{ec{p}_{\mathrm{T}}^{\mathrm{e}}-ec{E}_{\mathrm{T}}^{\mathrm{miss}}} < 0$	0.5	0.5	0.3			
$\Delta \phi_{\vec{p}_{\mathrm{T}}^{\mathrm{e}}-\vec{p}_{\mathrm{T}}^{\mu}}$ >	2.7	1.0				

H→µT Yields (CMS)

Phys. Lett. B 749 (2015) 337

Sample		$H \rightarrow \mu \tau_h$			$H \rightarrow \mu \tau_e$			
Jampie	0-Jet	1-Jet	2-Jets	0-Jet	1-Jet	2-Jets		
misidentified leptons	1770 ± 530	377 ± 114	1.8 ± 1.0	42 ± 17	16 ± 7	1.1 ± 0.7		
Z ightarrow au au	187 ± 10	59 ± 4	0.4 ± 0.2	65 ± 3	39 ± 2	1.3 ± 0.2		
ZZ, WW	46 ± 8	15 ± 3	0.2 ± 0.2	41 ± 7	22 ± 4	0.7 ± 0.2		
$\mathrm{W}\gamma$			—	2 ± 2	2 ± 2			
$Z \rightarrow ee \text{ or } \mu\mu$	110 ± 23	20 ± 7	0.1 ± 0.1	1.6 ± 0.7	1.8 ± 0.8			
tī	2.2 ± 0.6	24 ± 3	0.9 ± 0.5	4.8 ± 0.7	30 ± 3	1.8 ± 0.4		
tī	2.2 ± 1.1	13 ± 3	0.5 ± 0.5	1.9 ± 0.2	6.8 ± 0.8	0.2 ± 0.1		
SM H background	7.1 ± 1.3	5.3 ± 0.8	1.6 ± 0.5	1.9 ± 0.3	1.6 ± 0.2	0.6 ± 0.1		
sum of backgrounds	2125 ± 530	513 ± 114	5.4 ± 1.4	160 ± 19	118 ± 9	5.6 ± 0.9		
LFV Higgs boson signal	66 ± 18	30 ± 8	2.9 ± 1.1	23 ± 6	13 ± 3	1.2 ± 0.3		
data	2147	511	10	180	128	6		

arXiv:1508.03372

Cut	SR1	SR2	WCR	TCR
$p_{\mathrm{T}}(\mu)$	>26 GeV	>26 GeV	>26 GeV	>26 GeV
$p_{\mathrm{T}}(au_{\mathrm{had}})$	>45 GeV	>45 GeV	>45 GeV	>45 GeV
$m_{\rm T}(\mu, E_{\rm T}^{\rm miss})$	>40 GeV	<40 GeV	>60 GeV	—
$m_{\rm T}(\tau_{\rm had}, \hat{E}_{\rm T}^{\rm miss})$	<30 GeV	<60 GeV	>40 GeV	_
$ \eta(\mu) - \eta(\tau_{had}) $	<2	<2	<2	<2
N _{jet}	_	—	—	>1
N_{b-jet}	0	0	0	>0

H→µT Yields (ATLAS)

arXiv:1508.03372

	SR1	SR2
Signal	$69.1 \pm 0.8 \pm 9.2$	$48.5 \pm 0.8 \pm 7.5$
$Z \rightarrow \tau \tau$	$133.4 \pm 6.9 \pm 9.1$	$262.6 \pm 9.7 \pm 18.6$
W+jets	$619 \pm 54 \pm 55$	$406 \pm 42 \pm 34$
Тор	$39.5 \pm 5.3 \pm 4.7$	$19.6 \pm 3.1 \pm 3.3$
Same–Sign events	$335 \pm 19 \pm 47$	$238 \pm 16 \pm 34$
$VV + Z \rightarrow \mu\mu$	$90 \pm 21 \pm 16$	$81 \pm 22 \pm 17$
$H \to \tau \tau$	$6.82 \pm 0.21 \pm 0.97$	$13.7 \pm 0.3 \pm 1.9$
Total background	$1224 \pm 62 \pm 63$	$1021 \pm 51 \pm 49$
Data	1217	1075

$H \rightarrow \mu T_e, \mu T_h$ Results

Phys. Lett. B 749 (2015) 337

$H \rightarrow e_{T_{\mu}}, e_{T_{h}}$ Channels

CMS-PAS-HIG-14-040

40

H→eµ Channel

CMS-PAS-HIG-14-040

H→er,eµ Results

CMS-PAS-HIG-14-040

H/Z→J/ψ γ, Υ(nS)γ

Phys. Rev. Lett. 114 (2015) 121801

$H/Z \rightarrow J/\psi \gamma, \Upsilon(nS)\gamma$

Phys. Rev. Lett. 114 (2015) 121801, arXiv:1507.0303

	$95\% CL_s$ Upper Limits						
	J/ψ	$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(3S)$	$\sum^{n} \Upsilon(nS)$		
$\mathcal{B}\left(Z \to \mathcal{Q}\gamma\right)\left[\begin{array}{c}10^{-6}\end{array}\right]$							
Expected	$2.0^{+1.0}_{-0.6}$	$4.9^{+2.5}_{-1.4}$	$6.2^{+3.2}_{-1.8}$	$5.4^{+2.7}_{-1.5}$	$8.8^{+4.7}_{-2.5}$		
Observed	2.6	3.4	6.5	5.4	7.9		
$\mathcal{B}\left(H \to \mathcal{Q}\gamma\right) \left[\ 10^{-3} \ \right]$							
Expected	$1.2^{+0.6}_{-0.3}$	$1.8^{+0.9}_{-0.5}$	$2.1^{+1.1}_{-0.6}$	$1.8^{+0.9}_{-0.5}$	$2.5^{+1.3}_{-0.7}$		
Observed	1.5	1.3	1.9	1.3	2.0		
	$\sigma\left(p\right)$	$p \to H) \times l$	$\mathcal{B}(H \to \mathcal{Q}\gamma)$	() [fb]			
Expected	26^{+12}_{-7}	38^{+19}_{-11}	45_{-13}^{+24}	38^{+19}_{-11}	54^{+27}_{-15}		
Observed	33	29	41	28	44		

BR(H \rightarrow J/ $\psi\gamma$)<1.5×10⁻³ for CMS