Search for the Higgs boson in the ttH production channel using the ATLAS detector

Julian Bouffard State University of New York at Albany

> SUSY 2015 Lake Tahoe, California August 2015

ttH, Motivation

 $Y_X = \sqrt{2} \, \frac{m_X}{V_{...}}$

Higgs boson discovered. Must verify properties!

- Relative rates of production and decay modes
- Coupling to other particles
 - Fermion mass is proportional to this coupling; largest is coupling to top quark

ATLAS:

 $t\bar{t}H \rightarrow b\bar{b}$

DileptonSingle lepton

Top Pair Branching Fractions

Di-lepton:

Both tops decay leptonically
4 b jets + 2 lepton

 \circ One top decays leptonically, the other hadronically \circ 6 jets (including 4 b jets) + 1 lepton

H -> bb, Background Production

Primary background is top pair + b jets (tt+bb)

 σ (ttH) at 8 TeV ~ 0.13 pb σ (ttbb) at 8 TeV ~ O(12) pb

tt+bb background modeled with Powheg
 +Pythia 6 (NLO + Parton Shower) reweighted to
 Sherpa OpenLoops (NLO Matrix Element)

 \circ Identical final state, irreducible background

 \circ Signal vs background discrimination is difficult

• Gluon can also produce light or c quarks

 To enhance sensitivity, categorize events into regions in jet and b-tag multiplicity

Background composition in Dilepton

H -> bb, Analysis Design

4j 3b in dilepton

 \odot S/VB shown for single lepton channel. Red for signal regions and blue for control regions

• Fit signal and control regions simultaneously to reduce impact of systematics in signal region

 \odot Both channels use a neural network discriminant in signal region and H_T variable in control regions

5j 3b region in single lepton channel has a unique network trained to distinguish tt+HF (heavy flavor) from tt+light

4j 2b in single lepton

- Use kinematic variables to train network to distinguish signal from background
- Neural networks trained individually in each region

D1

• Variable choice (10 or 12 variables) optimized for each region

120

ATLAS

• Systematics treated as nuisance parameters in profile likelihood fit across all regions

Most significant systematics are

- tt+bb normalization 1.
- 2. Jet energy scale
- 3. tt+cc normalization
- tt+bb renormalization and scale 4.

ATLAS ttH (H→bb)

10

√s=8 TeV, 20.3 fb⁻¹

Expected $\pm 1\sigma$

Expected $\pm 2\sigma$

Observed

8

Combination Injected signal (μ =1) 2 6 0 4

Dilepton -

Lepton+jets

 $t\bar{t}H \rightarrow multileptons$

ATLAS

Analysis split into 5 channels in e/μ and tau multiplicity

12

Leading systematic uncertainties and impact on μ :

Source	Δμ		
$2\ell 0 au_{had}$ non-prompt muon transfer factor	+0.38	-0.35	
$t\bar{t}W$ acceptance	+0.26	-0.21	
$t\bar{t}H$ inclusive cross section	+0.28	-0.15	
Jet energy scale	+0.24	-0.18	
$2\ell 0\tau_{had}$ non-prompt electron transfer factor	+0.26	-0.16	
$t\bar{t}H$ acceptance	+0.22	-0.15	
$t\bar{t}Z$ inclusive cross section	+0.19	-0.17	
$t\bar{t}W$ inclusive cross section	+0.18	-0.15	
Muon isolation efficiency	+0.19	-0.14	
Luminosity	+0.18	-0.14	

Primary Backgrounds:

Irreducible, Estimated from MC: o ttW, ttZ o Diboson

Reducible, data driven: Non-prompt leptons
Charge mis-identification

Background enriched control regions are used to verify modeling

ttH -> Multileptons, Results

Channel	SM Higgs	Backgrounds	Data	
2ℓ SS+ $0\tau^{had}$	6.6±1.4	77±13	98	
3l	2.34±0.32	11.4±3.1	18	
2ℓ SS+1 τ ^{had}	0.47±0.02	1.4±0.6	1	
4l	0.20±0.01	0.55±0.17	1	
1ℓ + 2τ ^{had}	0.68±0.07	16±6	10	

 $\mu_{ttH}(\sigma/\sigma_{SM})$ < 4.7 obs (2.4 exp) @ 95% CL

ttH -> Multileptons, Event Display

single 2I+tau candidate event

 $t\bar{t}H \rightarrow \gamma\gamma$

ttH -> γγ

H -> $\gamma\gamma$ also split into channels according to top pair decay:

Leptonic (Single lepton and Di-lepton included) • Cuts are chosen to retain some sensitivity to tH Hadronic (Both tops decay hadronically)

Overall strategy is to fit sideband for background shape of $M_{\nu\nu}$, then fit signal on top

Expected number of events					Background integral in				
for M _H = 125.4 GeV					signal region (120-130)				
after event selection – Total = 1.3					determined from S+B				
						unbinned fit to the			
	range 105-160 GeV					eV .			
						Total = 4.6 ^{+1.3} -0.9			
Catagory	N	Γ	VDE		711	711		W.H	•
Category	N_H	ggF	VBF	WH	LΗ	ttH	tHqb	WtH	INB 0.5
7 TeV leptonic selection	0.10	0.6	0.1	14.9	4.0	72.6	5.3	2.5	$0.5^{+0.5}_{-0.3}$
7 TeV hadronic selection	0.07	(10.5)	1.3	1.3	1.4	80.9	2.6	1.9	$0.5^{+0.5}_{-0.3}$
8 TeV leptonic selection	0.58	1.0	0.2	(8.1)	2.3	80.3	5.6	2.6	$0.9^{+0.6}_{-0.4}$
8 TeV hadronic selection	0.49	7.3	1.0	0.7	1.3	84.2	3.4	2.1	$2.7^{+0.9}_{-0.7}$

Expected percentages of non-ttH contamination (largest source of systematic uncertainty)

Limit:

ATLAS

ttH -> $\gamma\gamma$, Results

160

Total H -> $\gamma\gamma$ cross section as function of κ_{t} :

18

August 12, 2015

Conclusions

With Run I Data, ATLAS has set limits and measurements on the Higgs boson produced in association with a top quark pair through 3 channels:

- ttH→γγ: μ < 6.7 obs (4.9 exp);
- ttH→bb: μ < 3.4 obs (2.2 exp);
- ttH \rightarrow leptons: μ < 4.7 obs (2.4 exp);

- > The analyses are all statistically limited
- ttH benefits from increased luminosity in Run II
- ttH cross section rises faster than background

Combined fitted result for ttH production is μ =1.81±0.80

From 8 to 13 TeV: Increase in $\sigma(ttH) \sim 4$ Increase in $\sigma(tt) \sim 3.3$

For kt = 0 process is turned off, and the top quark contribution to *tH* production and to the loop-induced $H \rightarrow \gamma \gamma$ decay is removed, leaving mainly the contribution from *W* bosons.

Cancellations of the contributions of top quarks and W bosons to the loopinduced $H \rightarrow \gamma \gamma$ decay lead to a minimum of the BR($H \rightarrow \gamma \gamma$) around a value of $\kappa t = +4.7$.

