#### THE EFFECTIVE FIELD THEORIES OF THE VACUUM

Daniel Egana-Ugrinovic Scott Thomas

**Rutgers University** 

#### What if in the near future...

- Significant deviations from the SM Higgs couplings are found (e.g. Craig, Galloway, Thomas I 305.2424).
- New scalars are found (e.g. Craig, D'Eramo, Draper, Thomas, Zhang, 1504.04630).
- Flavor physics points to new scalars, that could be charged (e.g. Crivellin 1412.2512).
- What would we theorists say about the low energy physics?

## I.Alignment

How do we build the map of theories?

• Guiding principle I, *alignment*:

The Higgs seems to couple to SM particles with similar strength than the Higgs condensate (\*)



(\* at least to gauge bosons and 3rd gen. fermions)

Naturally achieved in the decoupling limit

#### **II. EW Precision**

Guiding principle II, EW precision:

$$\rho = \frac{m_W^2}{m_Z^2 \cos^2 \theta_W} = 1.0008^{+0.0017}_{-0.0007}$$

# Easily achieved only with a vacuum parametrized by SU(2) singlets and doublets (\*)

(\* Exceptions with more complicated representations and some assumptions exist, e.g. Georgi, Machacek, Nucl. Phys. B 262, 463)

# III. Generality

Guiding principle III, be as general as possible, while being consistent with I and II.

## The EFT's of the Higgs sector

- These guiding principles are very constraining.
- The aligned <u>xSM</u> and <u>2HDM</u> are the simplest UV completions fulfilling these principles.

The objective Be as general as possible and derive the xSM and 2HDM EFT. Leave no effect behind.

#### The xSM EFT

The most general potential contains 7 parameters.

$$V = \frac{\mu^2}{2}S^2 + \frac{\zeta}{3}S^3 + \frac{\lambda_S}{8}S^4 + m^2H^{\dagger}H + \frac{\lambda}{2}(H^{\dagger}H)^2 + \xi SH^{\dagger}H + \frac{\lambda'}{2}S^2H^{\dagger}H$$

Derive the EFT by integrating out S. Example:



### The xSM EFT

Up to operator dimension six:

$$D_{\mu}H^{\dagger}D^{\mu}H + \frac{1}{2}\zeta_{H}\partial_{\mu}(H^{\dagger}H)\partial^{\mu}(H^{\dagger}H) - V'(H)$$

- By any means <u>not</u> the most general EFT you could write.
- Most coefficients controlled exclusively by one parameter:  $\frac{\xi^2}{\mu^2}$
- ▶ "Mixing" is encoded in WF renormalization.

Mixing - WF renormalization

#### Fermionic and Gauge Couplings

Fermionic and gauge couplings are modified at the same operator dimension.

$$\begin{split} \lambda_{\varphi ij}^{f} &= \frac{m_{i}^{f}}{v} \bigg[ 1 - \bigg[ \frac{\xi^{2}}{2\mu^{2}} \frac{v^{2}}{\mu^{2}} + \mathcal{O}\bigg( \frac{v^{4}}{\mu^{4}} \bigg) \bigg] \ \delta_{ij} \\ g_{\varphi VV} &= \frac{2m_{V}^{2}}{v} \bigg[ 1 - \bigg[ \frac{\xi^{2}}{2\mu^{2}} \frac{v^{2}}{\mu^{2}} + \mathcal{O}\bigg( \frac{v^{4}}{\mu^{4}} \bigg) \bigg] \\ g_{\varphi^{2}VV} &= \frac{2m_{V}^{2}}{v^{2}} \bigg[ 1 - \bigg[ 2\frac{\xi^{2}}{\mu^{2}} \frac{v^{2}}{\mu^{2}} + \mathcal{O}\bigg( \frac{v^{4}}{\mu^{4}} \bigg) \bigg] \end{split}$$

The last coupling is not just due to mixing with the singlet!

#### The Most General 2HDM

It is a theory of two identical doublets with a condensate specified by

$$\frac{v_1^2}{2} = \langle \Phi_1^{\dagger} \Phi_1 \rangle \qquad \frac{v_2^2}{2} = \langle \Phi_2^{\dagger} \Phi_2 \rangle$$
$$\xi = \operatorname{Arg} \langle \Phi_1^{\dagger} \Phi_2 \rangle$$

As such

$$\tan\beta = \frac{v_1}{v_2}$$

does not have physical meaning <u>at this point</u> (see for instance Haber, O'Neil, 0602242)

#### The Higgs Basis

We can always perform a rotation

$$e^{-i\xi/2}H_1 = \cos\beta \ \Phi_1 + \sin\beta \ e^{-i\xi} \ \Phi_2$$
$$H_2 = -\sin\beta \ e^{i\xi} \ \Phi_1 + \cos\beta \ \Phi_2$$
$$\frac{v^2}{2} = \langle H_1^{\dagger}H_1 \rangle \qquad 0 = \langle H_2^{\dagger}H_2 \rangle$$

This is the Higgs basis (e.g. Davidson, Haber 0504050). Useful in the <u>alignment limit</u>.



## The Higgs Basis

The new potential contains eleven physical parameters! (keeping track of BG symmetries)

$$V(H_{1}, H_{2}) = \tilde{m}_{1}^{2} H_{1}^{\dagger} H_{1} + \tilde{m}_{2}^{2} H_{2}^{\dagger} H_{2} + \left( \tilde{m}_{12}^{2} H_{1}^{\dagger} H_{2} + \text{h.c.} \right)$$
$$+ \frac{1}{2} \tilde{\lambda}_{1} (H_{1}^{\dagger} H_{1})^{2} + \frac{1}{2} \tilde{\lambda}_{2} (H_{2}^{\dagger} H_{2})^{2} + \tilde{\lambda}_{3} (H_{2}^{\dagger} H_{2}) (H_{1}^{\dagger} H_{1}) + \tilde{\lambda}_{4} (H_{2}^{\dagger} H_{1}) (H_{1}^{\dagger} H_{2})$$
$$+ \left[ \frac{1}{2} \tilde{\lambda}_{5} (H_{1}^{\dagger} H_{2})^{2} + \tilde{\lambda}_{6} H_{1}^{\dagger} H_{1} H_{1}^{\dagger} H_{2} + \tilde{\lambda}_{7} (H_{2}^{\dagger} H_{2}) (H_{1}^{\dagger} H_{2}) + \text{h.c.} \right]$$

The EWSB conditions are

$$v^2 = -2\frac{\tilde{m}_1^2}{\tilde{\lambda}_1}$$
$$\tilde{m}_{12}^2 = -\frac{1}{2}\tilde{\lambda}_6 v^2$$

No-tadpole condition

#### The Higgs Basis

The most general Yukawas are

$$\begin{bmatrix} \tilde{\lambda}_{aij}^{u} Q_{i}H_{a}\bar{u}_{j} - \tilde{\lambda}_{aij}^{d\dagger}Q_{i}H_{a}^{c}\bar{d}_{j} - \tilde{\lambda}_{aij}^{\ell\dagger}L_{i}H_{a}^{c}\bar{\ell}_{j} + \text{h.c.} \end{bmatrix}$$
$$\tilde{\lambda}_{1ij}^{f} = \frac{\sqrt{2}m_{ij}^{f}}{v}$$

The physical CP violating phases are

$$\begin{array}{ll} \theta_1 = \mathrm{Arg}(\tilde{\lambda}_6^2 \tilde{\lambda}_5^*) & \text{CP violation} \\ \theta_2 = \mathrm{Arg}(\tilde{\lambda}_7^2 \tilde{\lambda}_5^*) & \text{in the potential} \\ \mathrm{Arg} \, \tilde{\lambda}_{5,6,7}^* (\tilde{\lambda}_{2ij}^f)^2 & \text{CP violation in} \\ \mathrm{the potential or Yukawas} \end{array}$$

#### **Effective Dimension**

Examples:



# The 2HDM EFT: Higgs and fermions

The Higgs-fermion sector contains, as an example

$$\left[\lambda_{ij}^{u}Q_{i}H\bar{u}_{j}+\eta_{ij}^{u}Q_{i}HH^{\dagger}H\bar{u}_{j}+\cdots+\text{h.c.}\right]$$

Effective dimension six

$$\lambda_{\varphi ij}^{f} = \frac{m_{i}^{f}}{v} \,\delta_{ij} - 2\left(\frac{\tilde{\lambda}_{2ij}^{f}\tilde{\lambda}_{6}^{*}}{2\sqrt{2}}\right) \left(\frac{v^{2}}{\tilde{m}_{2}^{2}}\right) + \mathcal{O}\left(\frac{v^{4}}{\tilde{m}_{2}^{4}}\right)$$

- Controlled by the heavy doublet Yukawa and  $\tilde{\lambda}_6^*$
- Source of flavor violating processes  $(\Delta F = 1 \text{ only})$
- CP violation directly measurable in EDM's

#### The 2HDM EFT: fermions

The fermionic sector contains, as an example

$$\frac{\tilde{\lambda}_{2ij}^{u}\tilde{\lambda}_{2mn}^{u\dagger}}{\tilde{m}_{2}^{2}} (Q_{i}\bar{u}_{j})(\bar{u}_{m}^{\dagger}Q_{n}^{\dagger}) + \cdots \qquad \text{Effective dimension } \underline{six}$$

- Controlled by the heavy doublet Yukawa.
- Source of CP and flavor violation ( $\Delta F = 1 \& \Delta F = 2$ )

## The 2HDM EFT: Higgs and gauge bosons

The gauge-kinetic sector contains, as an example

$$\frac{\tilde{\lambda}_6^* \tilde{\lambda}_6}{\tilde{m}_2^4} H^{\dagger} H D_{\mu} H^{\dagger} D^{\mu} H + \cdots \frac{A I I}{a t} \text{ operators show up first} \\ \bullet$$

Controlled again by this same  $\tilde{\lambda}_6^* \dots!$ 

$$g_{\varphi^2 VV} = \frac{2m_V^2}{v^2} \left[ 1 - 3\tilde{\lambda}_6^{\dagger} \tilde{\lambda}_6 \left[ \frac{v^4}{\tilde{m}_2^4} + \mathcal{O}\left( \frac{v^6}{\tilde{m}_2^6} \right) \right] \right]$$

#### Comparing the couplings

Fermionic and gauge couplings are modified at different effective dimension.

$$g_{\varphi^2 VV} = \frac{2m_V^2}{v^2} \left[ 1 - 3\tilde{\lambda}_6^{\dagger}\tilde{\lambda}_6 \frac{v^4}{\tilde{m}_2^4} + \mathcal{O}\left(\frac{v^6}{\tilde{m}_2^6}\right) \right]$$
$$\lambda_{\varphi ij}^f = \frac{m_i^f}{v} \,\delta_{ij} - 2\left(\frac{\tilde{\lambda}_{2ij}^f\tilde{\lambda}_6^*}{2\sqrt{2}}\right) \left(\frac{v^2}{\tilde{m}_2^2}\right) + \mathcal{O}\left(\frac{v^4}{\tilde{m}_2^4}\right)$$

#### Comments

Normalize What is this  $\tilde{\lambda}_6^*$  controlling the deviations from the SM couplings?

It is related to a <u>complex alignment parameter  $\Xi$ </u>.



#### Comments

What if we live too close to the alignment limit?

There will still be hope to find hints of a second doublet in flavor experiments

$$\frac{\tilde{\lambda}_{2ij}^{u}\tilde{\lambda}_{2mn}^{u\dagger}}{\tilde{m}_{2}^{2}}(Q_{i}\bar{u}_{j})(\bar{u}_{m}^{\dagger}Q_{n}^{\dagger}) + \cdots$$

Note the bosonic CP violating phases  $\theta_1 \& \theta_2 ??$ 

They do not show up at to at least EDIO <u>All</u> CP violation in Higgs-fermion interactions!

#### Where is $tan\beta$ ?

- If you work with a general 2HDM you should not make any reference to  $tan\beta$ . It artificially extends your parameter space.
- Note that Where is  $tan\beta$ ? It is a direction singled out by particular models:
  - In the MSSM: direction relative to the flat direction Hu=Hd.
  - In type I 2HDM: direction relative to the coupled doublet (similar in types II,III,IV)

$$\tilde{\lambda}_{2ij}^{u,d,\ell} = \sqrt{2}e^{-\frac{i\xi}{2}}\cot\beta \frac{m_{ij}^{u,d,\ell}}{v}$$

#### Summary

#### The effective theories of the vacuum

|                                                        | The xSM              | The 2HDM                                                            |
|--------------------------------------------------------|----------------------|---------------------------------------------------------------------|
| Change in fermionic couplings                          | ED 6                 | ED 6                                                                |
| Change in couplings to gauge<br>bosons                 | ED 6                 | ED 8                                                                |
| Parametrized mostly by (*)<br>( <u>correlations</u> !) | A single real number | The complex alignment parameter and $\tilde{\lambda}^f_{2ij}$       |
| Flavor violation                                       | ×                    | $\Delta F=1, \Delta F=2$ chirality violating & chirality preserving |
| CP violation                                           | ×                    | Only in fermionic interactions                                      |

(\* Higgs self couplings are controlled by a larger set of the UV completion parameters)