

Sometimes I drive recklessly, just to kill off close copies of me in the multiverse.

Effects of Sfermion Mixing induced by RGE Running in the MFV CMSSM

Sven Heinemeyer, IFCA (CSIC, Santander)

Lake Tahoe, 08/2015

based on collaboration with M. Gomez, M. Rehman

- 1. Motivation
- 2. Calculation Set-Up
- 3. Numerical Results
- 4. Conclusions

1. Motivation

MSSM: Superpartners for Standard Model particles

Problem in the MSSM: more than 100 free parameters

Nobody(?) believes that a model describing nature has so many free parameters!

Sven Heinemeyer – SUSY 15, 27.08.2015

⇒ particle spectra from renormalization group running to weak scale ⇒ Lightest SUSY particle (LSP) is the lightest neutralino $\Rightarrow DM!$ GUT based models: CMSSM (sometimes wrongly called mSUGRA):

 \Rightarrow particle spectra from renormalization group running to weak scale

 \Rightarrow one parameter turns negative \Rightarrow Higgs mechanism for free

"Typical" CMSSM scenario

(SPS 1a benchmark scenario):

Strong connection between

all the sectors

SUSY fits (in the CMSSM), e.g. with MasterCode:

 \Rightarrow assumes no flavor violation at the EW scale! \Rightarrow justified? Overlooked effects?

2. Calculation Set-Up

Squarks at the low-energy scale:

$$\begin{split} m_{\tilde{U}_{L}}^{2} &= \begin{pmatrix} m_{\tilde{Q}_{1}}^{2} & \delta_{12}^{QLL} m_{\tilde{Q}_{1}} m_{\tilde{Q}_{2}} & \delta_{13}^{QLL} m_{\tilde{Q}_{1}} m_{\tilde{Q}_{3}} \\ \delta_{21}^{QLL} m_{\tilde{Q}_{2}} m_{\tilde{Q}_{1}} & m_{\tilde{Q}_{2}}^{2} & \delta_{23}^{QLL} m_{\tilde{Q}_{2}} m_{\tilde{Q}_{3}} \\ \delta_{31}^{QLL} m_{\tilde{Q}_{3}} m_{\tilde{Q}_{1}} & \delta_{32}^{QLL} m_{\tilde{Q}_{3}} m_{\tilde{Q}_{2}} & m_{\tilde{Q}_{3}}^{2} \end{pmatrix} \\ & m_{\tilde{D}_{L}}^{2} = V_{\text{CKM}}^{\dagger} m_{\tilde{U}_{L}}^{2} V_{\text{CKM}} , \\ m_{\tilde{U}_{R}}^{2} & \delta_{12}^{URR} m_{\tilde{U}_{1}} m_{\tilde{U}_{2}} & \delta_{13}^{URR} m_{\tilde{U}_{1}} m_{\tilde{U}_{3}} \\ \delta_{21}^{URR} m_{\tilde{U}_{2}} m_{\tilde{U}_{1}} & m_{\tilde{U}_{2}}^{2} & \delta_{23}^{URR} m_{\tilde{U}_{2}} m_{\tilde{U}_{3}} \\ \delta_{31}^{URR} m_{\tilde{U}_{3}} m_{\tilde{U}_{1}} & \delta_{32}^{URR} m_{\tilde{U}_{3}} m_{\tilde{U}_{2}} & m_{\tilde{U}_{3}}^{2} \end{pmatrix} \\ m_{\tilde{D}_{R}}^{2} &= \begin{pmatrix} m_{\tilde{D}_{1}}^{2} & \delta_{12}^{DRR} m_{\tilde{D}_{1}} m_{\tilde{D}_{2}} & \delta_{13}^{DRR} m_{\tilde{D}_{1}} m_{\tilde{D}_{3}} \\ \delta_{21}^{DRR} m_{\tilde{D}_{2}} m_{\tilde{D}_{1}} & m_{\tilde{D}_{2}}^{2} & \delta_{23}^{DRR} m_{\tilde{D}_{2}} m_{\tilde{D}_{3}} \\ \delta_{31}^{DRR} m_{\tilde{D}_{3}} m_{\tilde{D}_{1}} & \delta_{32}^{DRR} m_{\tilde{D}_{3}} m_{\tilde{D}_{2}} & m_{\tilde{D}_{3}}^{2} \end{pmatrix} \\ v_{2}\mathcal{A}^{u} &= \begin{pmatrix} m_{u}A_{u} & \delta_{12}^{ULR} m_{\tilde{Q}_{1}} m_{\tilde{U}_{2}} & \delta_{13}^{URR} m_{\tilde{Q}_{1}} m_{\tilde{U}_{3}} \\ \delta_{21}^{ULR} m_{\tilde{Q}_{2}} m_{\tilde{U}_{1}} & m_{c}A_{c} & \delta_{23}^{ULR} m_{\tilde{Q}_{2}} m_{\tilde{U}_{3}} \\ \delta_{31}^{ULR} m_{\tilde{Q}_{3}} m_{\tilde{U}_{1}} & \delta_{32}^{URR} m_{\tilde{Q}_{3}} m_{\tilde{U}_{2}} & m_{L}^{4} \end{pmatrix} \end{pmatrix} \end{split}$$

 \Rightarrow only source for $\delta_{ij}^{\mathsf{FAB}} \neq 0$: CKM matrix

- 1. CMSSM input: scan $m_{1/2}$, m_0 , fix A_0 , tan β \rightarrow no flavor violation!
- 2. Use Spheno 3.2.4 to generate low-energy spectra
- 3. \Rightarrow generation of $\delta_{ij}^{\mathsf{FAB}} \neq 0$ at the low-energy scale
- 4. Use FeynHiggs to evaluate M_h , ..., M_W , $\sin^2 \theta_{eff}$:

$$\Delta M_W \approx \frac{M_W}{2} \frac{c_W^2}{c_W^2 - s_W^2} \Delta \rho, \quad \Delta \sin^2 \theta_{\text{eff}} \approx -\frac{c_W^2 s_W^2}{c_W^2 - s_W^2} \Delta \rho$$
$$\Delta \rho = \frac{\Sigma_Z^T(0)}{M_Z^2} - \frac{\Sigma_W^T(0)}{M_W^2}$$

 \rightarrow including 6 \times 6 generation mixing

5. Use SuFla (as implemented into FeynHiggs) to calculate $BR(b \rightarrow s\gamma)$, $BR(B_s \rightarrow \mu^+\mu^-)$, ΔM_{B_s}

Experimental/theoretical uncertainties (MSSM!): \Rightarrow to set the scale!

$$\begin{split} &\delta M_h^{\text{exp,today}}\sim 200 \text{ MeV}, \quad \delta M_h^{\text{exp,future}}\lesssim 50 \text{ MeV}, \\ &\delta M_h^{\text{theo,today}}\sim 3 \text{ GeV}, \quad \delta M_h^{\text{theo,future}}\lesssim 0.5 \text{ GeV} \end{split}$$

$$\begin{split} &\delta M_W^{\text{exp,today}}\sim \text{15 MeV}, \quad \delta M_W^{\text{exp,future}}\sim \text{4 MeV}, \\ &\delta M_W^{\text{theo,today}}\lesssim 5-\text{10 MeV}, \quad \delta M_W^{\text{theo,future}}\lesssim 2-\text{4 MeV} \end{split}$$

$$\begin{split} &\delta \sin^2 \theta_{\text{eff}}^{\text{exp,today}} \sim 15 \times 10^{-5}, \quad \delta \sin^2 \theta_{\text{eff}}^{\text{exp,future}} \sim 1.3 \times 10^{-5}, \\ &\delta \sin^2 \theta_{\text{eff}}^{\text{theo,today}} \lesssim 5 - 7 \times 10^{-5}, \quad \delta \sin^2 \theta_{\text{eff}}^{\text{theo,future}} \lesssim 2 - 4 \times 10^{-5} \end{split}$$

Observable	Experimental Value	SM Prediction
$BR(b o s\gamma)$	$3.43 \pm 0.22 imes 10^{-4}$	$3.15 \pm 0.23 imes 10^{-4}$
$BR(B_s \to \mu^+ \mu^-)$	$(3.0)^{+1.0}_{-0.9} imes 10^{-9}$	$3.23 \pm 0.27 imes 10^{-9}$
ΔM_{B_s}	$116.4\pm0.5 imes10^{-10}$ MeV	$(117.1)^{+17.2}_{-16.4} imes 10^{-10} \; { m MeV}$

3. Numerical results

Details can be found in [arXiv:1501.02258]

Shown are:

$$\Delta X^{\mathsf{MFV}} = X - X^{\mathsf{MSSM}}$$

 X^{MSSM} : prediction setting all $\delta_{ij}^{\text{FAB}} = 0$ at the EW scale

X: prediction taking all the $\delta_{ij}^{FAB} \neq 0$ into account (as evaluated with Spheno)

 \Rightarrow shows what is neglected by setting all $\delta_{ij}^{\text{FAB}} = 0$

small effects: ok, good approximation large effects: bad approximation!

Induced δ_{ij}^{FAB} via CKM effects in the RGE running: δ_{23}^{QLL} :

 \Rightarrow large δ_{23}^{QLL} induced, no decoupling for large m_0

 \Rightarrow small effects

Induced BPO mass effects via CKM effects in the RGE running:

 $A_0 = -3000 \text{ GeV}, \tan \beta = 45 \text{ (largest effects)}$

\Rightarrow small effects

Induced ΔM_W^{MFV} via CKM effects in the RGE running:

 \Rightarrow Effects can be several times the current exp. uncertainty! \Rightarrow new bounds on the CMSSM?

How can these large effects be understood?

- RGE running induces non-decoupling $\delta_{ij}^{\text{FAB}} \neq 0$
- this induces SU(2) doublet mass splittings, e.g. " \tilde{t}_1 - \tilde{b}_1 " $((m_{\tilde{t}_1}^2 - m_{\tilde{b}_1}^2)/(m_{\tilde{t}_1}^2 + m_{\tilde{b}_1}^2))$, ...
- $-\Delta \rho$ is sensitive to exactly these SU(2) doublet mass splittings

Sven Heinemeyer – SUSY 15, 27.08.2015

4. Conclusinos

- GUT based analyses often assume no generation mix. at the EW scale ⇒ justified? Overlooked effects?
- Some generation mixing always induced by CKM matrix
- Calculation set-up: Spheno for RGE running \Rightarrow generation of $\delta_{ij}^{\text{FAB}} \neq 0$ at the low-energy scale FeynHiggs/SuFla for the evaluation of M_h , M_W , $\sin^2 \theta_{\text{eff}}$, BPO
- RGE running induces non-decoupling $\delta_{ij}^{\text{FAB}} \neq 0$
- Negligible effects on M_h , ..., BPO
- \Rightarrow large ΔM_W^{MFV} induced, no decoupling for large m_0
 - \Rightarrow Effects can be several times the current exp. uncertainty!
 - \Rightarrow new bounds on the CMSSM?

Back-up

The W boson mass

Experimental accuracy:

Today: LEP2, Tevatron: $M_W^{\text{exp}} = 80.385 \pm 0.015 \text{ GeV}$

ILC/TLEP: – polarized threshold scan - kinematic reconstruction of W^+W^- [G. Wilson '13] - hadronic mass (single W) $\delta M_W^{\text{exp,ILC(TLEP)}} \lesssim 3(1) \text{ MeV (from thr. scan)} \quad \leftarrow \text{TU neglected}$ Theoretical accuracies: intrinsic today: $\delta M_W^{\text{SM,theo}} = 4 \text{ MeV}, \quad \delta M_W^{\text{MSSM,today}} = 5 - 10 \text{ MeV}$ intrinsic future: $\delta M_W^{\text{SM,theo,fut}} = 1 \text{ MeV}, \quad \delta M_W^{\text{MSSM,fut}} = 2 - 4 \text{ MeV}$ parametric today: $\delta m_t = 0.9 \text{ GeV}, \ \delta(\Delta \alpha_{had}) = 10^{-4}, \ \delta M_Z = 2.1 \text{ MeV}$ $\delta M_W^{\text{para},m_t} = 5.5 \text{ MeV}, \quad \delta M_W^{\text{para},\Delta\alpha_{\text{had}}} = 2 \text{ MeV}, \quad \delta M_W^{\text{para},M_Z} = 2.5 \text{ MeV}$ parametric future: $\delta m_t^{\text{ILC/TLEP}} = 0.1 \text{ GeV}, \ \delta (\Delta \alpha_{\text{had}})^{\text{fut}} = 5 \times 10^{-5}$ $\Delta M_W^{\text{para,fut},m_t} = 1 \text{ MeV}, \quad \Delta M_W^{\text{para,fut},\Delta\alpha_{\text{had}}} = 1 \text{ MeV}$

The effective weak leptonic mixing angle: $\sin^2 \theta_{\rm eff}$

Experimental accuracy:

Today: LEP, SLD: $\sin^2 \theta_{eff}^{exp} = 0.23153 \pm 0.00016$ GigaZ/TeraZ: both beams polarized, Blondel scheme $\delta \sin^2 \theta_{\text{eff}}^{\text{exp,ILC(TLEP)}} = 13(3) \times 10^{-6} \quad \leftarrow \text{TU neglected}$ Theoretical accuracies: $[10^{-6}]$ intrinsic today: $\delta \sin^2 \theta_{eff}^{SM,theo} = 47$ $\delta \sin^2 \theta_{eff}^{MSSM,today} = 50 - 70$ intrinsic future: $\delta \sin^2 \theta_{eff}^{SM,theo,fut} = 15$ $\delta \sin^2 \theta_{eff}^{MSSM,fut} = 25 - 35$ parametric today: $\delta m_t = 0.9 \text{ GeV}, \ \delta(\Delta \alpha_{had}) = 10^{-4}, \ \delta M_Z = 2.1 \text{ MeV}$ $\delta \sin^2 \theta_{\text{eff}}^{\text{para},m_t} = 70, \quad \delta \sin^2 \theta_{\text{eff}}^{\text{para},\Delta \alpha_{\text{had}}} = 36, \quad \delta \sin^2 \theta_{\text{eff}}^{\text{para},M_Z} = 14$ parametric future: $\delta m_t^{\text{ILC/TLEP}} = 0.1 \text{ GeV}, \ \delta (\Delta \alpha_{\text{had}})^{\text{fut}} = 5 \times 10^{-5}$

 $\Delta \sin^2 \theta_{\text{eff}}^{\text{para,fut},m_t} = 4, \quad \Delta \sin^2 \theta_{\text{eff}}^{\text{para,fut},\Delta \alpha_{\text{had}}} = 18$