Searches for monopoles and other exotic particles using LHC data at the ATLAS experiment

Gabriel Palacino

York University ATLAS collaboration

Introduction

- Observation of particles with |z|>1 or magnetic charge would be a signature for physics beyond the SM, answering fundamental open questions as:
 - the nature of dark matter
 - quantization of charge
- Searches for such particles are based on anomalous ionization in ATLAS
- Ionization is the main energy loss mechanism
 - absence of electromagnetic cascade

Electrically charged particles

$$-\frac{dE}{dx} = K\frac{Z}{A}\frac{z^2}{\beta^2} \left[\ln \frac{2m_e c^2 \beta^2 \gamma^2}{I} - \beta^2 - \frac{\delta}{2} \right] \qquad -\frac{dE}{dx} = K\frac{Z}{A}g^2 \left[\ln \frac{2m_e c^2 \beta^2 \gamma^2}{I} + \frac{k(|g|)}{2} - \frac{1}{2} - \frac{\delta}{2} - B(|n|) \right]$$

• Latest results using 8 TeV data are presented here

The ATLAS detector

The ATLAS detector

arXiv:1504.04188 [hep-ex] accepted by EPJ C

- Long-lived multi-charged particles of spin-1/2 with electric charge in the range
 - ▶ 2 < |z| < 6
- Predicted by:
 - Almost-commutative model ^[1]:
 - Two extra heavy fermions with $|z| \ge 1$ and expected mass > 100 GeV
 - Walking technicolor model ^[2]:
 - Three technibaryons with charge z+1, z, z-1
 - Left-right symmetric model ^[3]:
 - Right-handed version of weak interaction. Requires doubly charged Higgs
- Observation of particles with even charge |z|=2n are of special interest for cosmological models of composite dark matter [4]

[1] J.Phys. A **39** 9657 (2006), arXiv:hep-th/0509213
[2] Phys. Rev. D **71** 0151901 (2005), arXiv:hep-th/0405209

^[3] J Phys. Rev. D **11** 566 (1975)

^[4] Mod.Phys.Lett. **A26** 2823 (2011), arXiv:1111.2838

- Search for particles with charge 2 ≤ |z| ≤ 6 and mass 50 — 1000 GeV
- Long-lived particles with muon-like signature with anomalous dE/dx
- Events selected with two triggers:
 - Single-muon with $p_T/z > 36$ GeV: sensitive to particles with $\beta > 0.6$
 - Missing E_T > 80 GeV: recovers 10% of events missed by single-muon trigger
- Analysis based on dE/dx measurements in Pixel, TRT and MDT, and fraction of TRT high-threshold hits f^{HT} on track
- Selection of candidate tracks:
 - For |z|=2, high dE/dx significance in pixel
 S(pixel dE/dx) is required
 - For |z|>2, large fraction f^{HT} is required

- Final selection based on dE/dx significance in TRT and MDT
- Data-driven background estimate using ABCD method
- No candidate events observed in signal region
- Upper cross section limits set at 95% confidence level assuming pair production using CLs method*
- Mass exclusion regions obtained for wide ranges of tested masses

Mass exclusion regions [GeV]					
z =2	z =3	z = 4	z =5	z = 6	
50-660	50-740	50-780	50-785	50-760	

*J. Phys. G: Nucl. Part. Phys. 28 (2002) 2693

To be submitted to PRD (EXOT-2014-16)

- Magnetic monopoles are stable particles
 - Explain charge quantization ^[1]:
 - Dirac's condition $g = \frac{ne}{2\alpha}$
 - From Dirac's quantization condition: $g = ng_D$, $g_D = \frac{e}{2\alpha} \approx 68.5e$
 - Predicted by GUT theories and some EW models ^[2]:
 - GUT: Mass 10¹¹ 10¹³ TeV
 - EW : Mass 4 7 TeV, g=2g_D
- Scenarios with objects with large electric charge ^[3]:
 - Strange quark matter
 - Q-balls
 - Micro black hole remnants
- No spin preference: search includes both spin-0 and spin-1/2 particles

^[1] Proc. Roy. Soc. A **133** 60 (1931)
 ^[2] arXiv:1212.3885v6 [hep-ph]

^[3] Phys. Rept. **438** 1 (2007), arXiv:0611040 [hep-ph]

Highly ionizing particle (HIP) trigger

- ATLAS trigger system is divided in three levels
 - Level-1: hardware based, uses calorimeter energy deposits and muon spectrometer hits
 - Level-2: reconstruction of regions of interest selected at Level-1
 - Level-3: full event reconstruction

- A dedicated Level-2 trigger for HIPs was developed
 - Level-1: E_T≥18 GeV in LAr EM calorimeter and less than 1 GeV in hadronic calorimeter
 - Level-2: TRT information in a wedge of size $\Delta \phi = \pm 0.015$ is required
 - Requirements on the number and fraction of TRT HT hits are applied
 - Collected luminosity: 7.0 fb⁻¹
 - Trigger efficiency turn-on determined by Level-1 trigger acceptance
 - Monopoles with |g|>1.0g_D accessible for the first time at ATLAS

120 GeV photon trigger

- Search for HIPs in mass range 200 2500 GeV
 - $10 \le |z| \le 60$
 - $-0.5g_{D} \le |g| \le 2.0g_{D}$
- HIP signatures in ATLAS:
 - Region of high ionization density in TRT
 - Low lateral dispersion in LAr calorimeter energy deposit
- Events must have passed the HIP trigger

-400

 X_{TRT} [mm]

-500

- Data-driven background estimate using ABCD method
- No candidate events observed in signal region
- Model-independent upper cross section limits set to 0.5 fb for HIPs in fiducial regions of high and uniform event selection efficiency
- Upper cross section limits and lower mass limits set assuming pair production model at 95% confidence level with CLs method

	Drell-Yan Lower Mass Limits [GeV]						
	$ g = 0.5g_{\rm D}$	$ g = 1.0g_{\rm D}$	$ g = 1.5g_{\rm D}$	z = 10	z = 20	z = 40	z = 60
spin-1/2	1180	1340	1210	780	1050	1160	1070
spin-0	890	1050	970	490	780	920	880

Summary

- Searches for magnetic monopoles and particles with |z|>1 have been performed using LHC pp collision data from Run 1.
- Analysis techniques exploit anomalous ionization from monopoles and particles with |z|>1.
- No evidence of such particles has been observed.
- Limits on production cross section have been set assuming simplified Drell-Yan production models. Mass exclusion regions have been obtained.
- Magnetic monopoles and particles with |z|>1 may be the answer (or at least part of it) to fundamental questions:
 - charge quantization
 - the nature of dark matter

Backup slides

dE/dx significance

Event selection criteria

		Trigger and event	Candidate track	Tight and final	Tight and final
		selection	selection	selections $(z=2)$	selections $(z \ge 3)$
Requirements	Single-muon trigger case	≥ 1 trigger tight muon with $p_{\rm T}/z > 36$ GeV ≥ 1 reconstructed muon with $p_{\rm T}/z > 75$ GeV	Any muon with: $N_{\text{MDT hits}} \ge 7$ $p_{\text{T}}/z > 40 \text{ GeV}$ $ \eta < 2.0$ $N_{\text{SCT hits}} \ge 6$ $N_{\text{TRT hits}} \ge 10$ $ d_0 < 1.5 \text{ mm}$ $ z_0 \sin \theta < 1.5 \text{ mm}$ no other tracks within $\Delta R < 0.01$	Event passing preselection having a muon with:	Event passing preselection having a muon with:
	$E_{\mathrm{T}}^{\mathrm{miss}}$ trigger case	trigger $E_{\rm T}^{\rm miss} > 80 \text{ GeV}$ $\geq 1 \text{ reconstructed muon}$ with $p_{\rm T}/z > 60 \text{ GeV}$	Any muon with: $N_{\text{MDT hits}} \ge 7$ $p_{\text{T}}/z > 30 \text{ GeV}$ $ \eta < 2.0$ $N_{\text{SCT hits}} \ge 6$ $N_{\text{TRT hits}} \ge 10$ $ d_0 < 1.5 \text{ mm}$ $ z_0 \sin \theta < 1.5 \text{ mm}$ no other tracks within $\Delta R < 0.01$	S(pixel dE/dx) > 17 S(MDT dE/dx) > 5 S(TRT dE/dx) > 5	$f^{\rm HT} > 0.45$ S(MDT dE/dx) > 7.2 S(TRT dE/dx) > 6

Fiducial regions

- Defined as regions of high and uniform event selection efficiency in E^{kin} vs. $|\eta|$
- Obtained using single particle samples.
- Largest rectangle with
 - average selection efficiency > 90%
 - standard deviation < 12.5%
- To account for detector geometry, three fiducial regions are defined in $|\eta|$: $|\eta|<1, 1<|\eta|<1.35$ and 1.55< $|\eta|<2$

Monopoles and objects with large electric charge Fiducial regions

17

Extrapolation to spin-0

- Based on event selection efficiency maps in E_T^{kin} vs. η space
- Only 4-vectors of spin-0 HIPs produced with Drell-Yan model are needed
- A systematic uncertainty is assessed to account for the use of the extrapolation method instead of full ATLAS simulation of spin-0 HIPs

Energy losses by monopoles

Realistic LHC scenarios

10 dE/dx[GeVcm²/g] Ionization - Bremsstrahlung ---- Pair-production 10- 10^{-2} Monopole m=1000 GeV in Ar 10^{-3} 10^{-10} 5 10 25 15 20 30 35 S.P. Ahlen, Phys. Rev. D14, 2935 (1976); D17, 229 (1978); γ

 $\frac{dE_{\rm rad}}{dE_{\rm coll}} = \frac{4}{3\pi} \frac{Zz^2}{137} \frac{m_e}{M_{\rm mp}} \frac{1}{\ln[\cdots]},$ $\frac{dE_{\rm rad}}{dx} = \frac{16}{3} \frac{Z^2}{137} \frac{z^4 e^4}{M_{\rm mp}}$ $\beta \ll 1$ $\frac{dE_{\rm rad}}{dx} = \frac{16}{3} \frac{Z^2}{137} \frac{z^4 e^4}{M_{\rm mp}} \gamma \ln\left(\frac{233M_{\rm mp}}{Z^{1/3}m_e}\right) \longrightarrow \frac{dE_{\rm rad}}{dE_{\rm coll}} = \frac{4}{3\pi} \frac{Zz^2}{137} \frac{m_e}{M_{\rm mp}} \gamma \ln\left(\frac{233M_{\rm mp}}{Z^{1/3}m_e}\right),$ g_D = 68.5e !

19

- Energy losses dominated by ionization.
- Large numbers of energetic δ-rays are produced.
- Bremsstrahlung and pair production can be safely ignored in the simulation.

Rev. Mod. Phys. 52, 121 (1980).

Drell-Yan production

• Magnetic coupling: in analogy to electric coupling

$$\alpha = \frac{1}{4\pi\epsilon_0} \frac{e^2}{\hbar c} \longrightarrow \alpha_{\rm m} = \frac{\mu_0}{4\pi} \frac{g^2}{\hbar c} \qquad \alpha_{\rm m} = \frac{\mu_0}{4\pi} \frac{g^2}{\hbar c} \approx 34.24 > 1 \quad \text{(for n=1)}$$