

Searches for non-MSSM top/bottom quark partners with the ATLAS detector at the LHC

Jun Guo Shanghai Jiao Tong University On behalf of the ATLAS Collaboration SUSY2015, Lake Tahoe, USA, 08/23 – 08/29/2015

Why search for Vector-like quarks?

- In addition to SUSY, some other new physics models provide natural solutions to hierachy problem, which predict the existence of Vector-like quarks(VLQ), to cancel quadratic divergences arising from radiative corrections of the Higgs mass
 - Predicted by Topcolor, Little Higgs and Composite Higgs, etc.
 - Colour-triplet, spin-1/2, both left- and right-handed components transform under the same SU(2)xU(1) group
 - Unlike Chiral 4th generation, VLQ avoid limits from Higgs measurement

SUSY2015, Lake Tahoe, USA

Vector-like Quarks

• Production:

- Pair production: strong interaction, better sensitivity at lower mass, only depends on mass
- Single production: weak interaction, more dominant at high mass, depends on mass, charge, coupling
- Decay: large coupling with 3rd generation quarks; FCNC decays are allowed
 - B->Wt, Zb, Hb
 - T->Wb, Zt, Ht

• Search strategy: based on final signatures

SUSY2015, Lake Tahoe, USA

VLQ analyses at ATLAS

- Pair production(couple with 3rd generation)
 - Lepton+jets:
 - Wt+X: arxiv:1503.05425, PRD
 - Wb+X: arxiv:1505.04306, JHEP
 - Ht/b+X: arxiv:1505.04306, JHEP
 - **Zt/Zb+X: Z->dilepton,** arxiv:1409.5500, JHEP
 - Same-Sign leptons: arxiv:1504.04605, submitted to JHEP
- VLQ pair->Wq+X: just approved by ATLAS
- Single VLQ: arxiv:1409.5500, JHEP

Strategy of VLQ pair production: TT

SUSY2015, Lake Tahoe, USA

BB->Wt+X

arxiv:1503.05425

- Search for vector-like heavy down-type quark B in pair production with 8TeV(20fb⁻¹):
 - BB->tWtW->WWbWWb->lepton+v+8jets
 - BB->tWbZ->WWbZb->lepton+v+6jets
- Selection:
 - High p_T isolated lepton(e/ μ), jets
 - High E^{, miss},
 - Main variables: H_T, # of jets, # of hadronic
 W's
- Challenge:
 - Difficult to efficiently reconstruct "B" candidate
 - Dominant ttbar+jets background due to event topology close to signal
 - Modeling of high jet multiplicity
 - Large systematics: Jet energy scale, theory model, ...
- Use Multi-variate technique: BDT

BDT input variables

12 BDT input variables were chosen based on discrimination power :

≻ H_T, N_{iets}, N_V, pT(lepton), MET,

Result: Limit Setting

Mass limit vs Branching Ratios of VLQ B. The best mass limit is from BB->WtWt: Obs.(Exp.) mass > 810 (760) GeV

SUSY2015, Lake Tahoe, USA

TT->Wb+X

- Selection:
 - High p_T isolated lepton(e/ μ), high p_T jets
 - $H_{T} > 800 \text{ GeV}$
 - $N_{jets} \ge 4$, $N_{bjets} \ge 2$
- Hadronic W reconstruction: W_{had}
 - Type-I: single jet, p_T>400 GeV
 - Type-II: di-jet, ∆R(j,j)<0.8, p_T>250 GeV, 60<m<120 GeV
- Leptonic W reconstruction: W_{lep}
 - Use nominal W mass to constrain neutrino longitudinal momentum

arxiv:1505.04306

TT->Wb+X

Final discriminant: m_{reco}

- From W_{had} and one b-jet
- Pairing W_{had/lep} with b-jet to get the smallest absolute difference between the two reconstructed heavy quark masses

SUSY2015, Lake Tahoe, USA

- High p_T isolated lepton(e/ μ), high p_T jets
- N_{jets} ≥ 5
- $N_{bjets} \ge 2$
- Discriminant:
 - H_T, independent from decay mode
- Main background:
 - ttbar+jets, largely affected by b tagging, jet energy scale, modeling of heavy-flavor content

- Split events into 6 channels based on number of jets & bjets to optimize sensitivity:
 - $-N_{jets}: 5, \geq 6$
 - $-N_{bjets}^{'}: 2, 3, \ge 4$
- Fit overall scaling factors to tt+light jets and tt+HF to "calibrate" background prediction to data and reduce impact of systematics:
 - 2-bjets and 3-bjets channels play an important role

SUSY2015, Lake Tahoe, USA

- Split events into 6 channels based on number of jets & bjets to optimize sensitivity:
 - $-N_{jets}: 5, \geq 6$
 - $-N_{bjets}^{\prime}: 2, 3, \geq 4$
- Fit overall scaling factors to tt+light jets and tt+HF to "calibrate" background prediction to data and reduce impact of systematics:
 - 2-bjets and 3-bjets channels play an important role

SUSY2015, Lake Tahoe, USA

Wb/Ht+X result: TT

Sensitivity is up to 900 GeV

arxiv:1505.04306

SUSY2015, Lake Tahoe, USA

g

arxiv:1505.04306

- Similar selection as for Ht+X, but with tighter 2 leading b-jets p_T cut(> 150 GeV):
 - High p_T isolated lepton(e/ μ), high p_T jets
 - **N**_{jets} ≥ 5
 - N_{bjets} ≥ 2
- of spanning of Split events into 6 channels based on number of jets & bjets to optimize sensitivity:
 - N_{jets} : 5, ≥ 6
 - N_{bjets} : 2, 3, ≥ 4
- Main background:
 - ttbar+jets, largely affected by b tagging, jet energy scale, modeling of heavy-flavor content

SUSY2015, Lake Tahoe, USA

Jun Guo - Shanghai Jiao Tong University

 W^+, H, Z

 $\overline{t}.\overline{b}.\overline{b}$

TT/BB->Same-Sign leptons

- Low SM backgrounds:
 - 2 leptons with same charge
 - $N_{jets} \ge 2, N_{bjets} \ge 1$
 - Large MET(> 40 GeV)
 - Large H_T
- Eight orthogonal signal regions are defined by varying cuts on H_T, N_{bjets}, MET
- Dominant backgrounds:
 - Mis-identified leptons estimated from datadriven method
 - Charge mis-identification, determined from Z events
 - Irreducible diboson(VV), and ttbar+V

SUSY2015, Lake Tahoe, USA

• Selection:

- High p_T Z boson, which decays leptonically
- N_{bjets} ≥ 2
- $p_T(Z) > 150 \text{ GeV}$
- $H_{T} > 600 \text{ GeV}$
- Discriminant:
 - Dilepton: m(Zb)
 - Trilepton: H_T

arxiv:1409.5500

No signal observed!

SUSY2015, Lake Tahoe, USA

Summarize limits from various search channels

- Observed(Expected) limit ranges between 730(715) GeV and 950(885) GeV
- Best sensitivity comes from T->Ht decay

Summarize limits from various search channels

Expected

Observed

- Observed(Expected) limit ranges between 575(615) GeV and 813(800) GeV
- Best sensitivity comes from B->Wt decay

VLQ pair-> Wq+X

- In some models(LRMM, E6GUT, etc.), VLQ can decay to light quarks(u, d, s)
- Signatures explored: WWqq
 - Hadronic W & leptonic W
- No evidence for new physics observed so 95% CL limits were derived
- Limited sensitivity at low masses due to tight selection optimized for VLQ->Wq. Therefore set limit on both upper and lower mass bounds

(pH ↓

Q

Щ

0.9

0.8E

0.7E

0.6E

0.5F

0.4E

0.3|

0.2[⊨]

0.

0

GeV ATLAS Preliminary \s=8 TeV, 20.3 fb⁻¹ 30 Events / 160 (52 53 Data final selection Signal(600) 25 Signal(700) Signal(800) W+iets non-W+jets ///// Total bkg. uncert. 15 10 5 800 1200 200 400 600 1000 m_{reco} [GeV] Lower bounds

Upper bounds

SUSY2015, Lake Tahoe, USA

Single VLQ(T/B -> Zt/b) arxiv:1409.5500

U

g

 W^+

b

T

h

- Similar selection as for pair-production, but require energetic forward light-flavor jet produced in association
- For di-lepton channel, H_T requirement is removed
- Cross-section limits place limited constraints on the coupling with 3rd generation

Jun Guo - Shanghai Jiao Tong University

SUSY2015, Lake Tahoe, USA

Summary

- Searches for Vector-like Quarks were carried out in various channels(lepton+jets, multi-lepton, ...) at ATLAS in Run I, including pair- and single-production.
- Search strategies were optimized independently for different channels. ATLAS results on heavy quarks have been published(or will soon) with 20fb⁻¹ 8TeV data. No VLQ has been discovered so far ⁽²⁾
- Current result mainly relies on VLQ pair-production. As mass limits reaching higher region, sensitivity of single production of VLQ will become more important, which also depends on the coupling with 3rd generation
- Run II @13 TeV data taking has begun. Stay tuned for more exciting physics!

backup

SUSY2015, Lake Tahoe, USA

ATLAS detector

Challenge: search signatures at high p_T/E_T

- Electrons/photons: isolated energy in EM Calorimeter(|η|<2.47)
- Muons: combined tracks from ID + MS ($|\eta|$ < 2.0)
- Neutrinos: total missing transverse energy of objects in calorimeter(with muon corrections)
- Jets: total transverse energy of objects in calorimeter

SUSY2015, Lake Tahoe, USA Jun Guo - Shanghai Jiao Tong University

BB->Wt+X: W/Z boson tag

- Decay products from VLQ tend to have large transverse momentum
 - Decay products from W/Z could get collinear as $p_T(W/Z)$ gets large, or even merge into one single jet
 - $\Delta R(jet, jet) \approx 2^* m_W / p_T(W), \Delta R = sqrt(\Delta \eta^2 + \Delta \phi^2)$

SUSY2015, Lake Tahoe, USA

BB->Wt+X: W/Z boson tag

- Single jet W: (had to drop it due to unavailable systematic error)
 - $p_T(antikt4) > 200 \text{ GeV}$
 - 60 GeV < mass(jet) < 110 GeV</p>

- Di-jet W:
 - $p_T(dijet) > 120 \text{ GeV}$
 - $\Delta R(dijet) < 1.0$
 - 60 GeV < mass(dijet) < 110 GeV</p>

BB->Wt+X: BDT

- Selection: lepton, jet selection, triangle cut, HT>500 GeV, >=6 jets, >= 1 btag, >=1 W's
- Started with >30 variables and reduce to 12 variables that have high rankings and small correlation among them:

٠

- # of W's
- # of jets
- E of leading bjet
 - E_Tmiss
- − p_T(lepton)
- $\Delta R(lepton, leading b)$
- min∆R(lepton, hadronic W)
- Average ΔR (jet, jet) from dijet W
- pT of leptonic W
- # of bjets
- Mt of leptonic W

Jun Guo - Shanghai Jiao Tong University

Signal region : cut-based

 $N_w = 1$

- These two H_{τ} plots will be used to search for a signal and set limits
- The sensitivity mainly comes from $N_w \ge 2$, while $N_w = 1$ is more • useful for constraining systematics

TT/BB->Zt/Zb+X

Observed(expected) limit at 95% CL:

- T singlet: m_T > 655(625) GeV
- T doublet: m_T > 735(720) GeV

JHEP: http://arxiv.org/abs/1409.5500

TT/BB->Zt/Zb+X

Observed(expected) limit at 95% CL:

- B singlet: m_B > 685(670) GeV
- B doublet: m_B > 755(755) GeV •

JHEP: http://arxiv.org/abs/1409.5500

- Further suppression of background using angular variables
 - $-\Delta R(lepton,v) < 1.2$
 - $\min \Delta R(lepton, b_{1,2}) > 1.4$
 - $-\min \Delta R(W_{had}, b_{1,2}) > 1.4$

Selection	Requirements
Preselection	Exactly one electron or muon $E_{\rm T}^{\rm miss} > 20 \text{ GeV}, E_{\rm T}^{\rm miss} + m_{\rm T}^W > 60 \text{ GeV}$ $\geq 4 \text{ jets}, \geq 1 b\text{-tagged jets}$
Loose selection	$ \begin{array}{l} \text{Preselection} \\ \geq 1 \ W_{\text{had}} \ \text{candidate (type I or type II)} \\ H_{\text{T}} > 800 \ \text{GeV} \\ p_{\text{T}}(b_1) > 160 \ \text{GeV}, \ p_{\text{T}}(b_2) > 110 \ \text{GeV (type I) or } p_{\text{T}}(b_2) > 80 \ \text{GeV (type II)} \\ \Delta R(\ell,\nu) < 0.8 \ \text{(type I) or } \Delta R(\ell,\nu) < 1.2 \ \text{(type II)} \\ \end{array} $
Tight selection	Loose selection $\min(\Delta R(\ell, b_{1,2})) > 1.4, \min(\Delta R(W_{had}, b_{1,2})) > 1.4$ $\Delta R(b_1, b_2) > 1.0$ (type I) or $\Delta R(b_1, b_2) > 0.8$ (type II) $\Delta m < 250$ GeV (type I) [see text for definition]

SUSY2015, Lake Tahoe, USA

Same-sign leptons

	Name				
$e^{\pm}e^{\pm} + e^{\pm}\mu^{\pm} + \mu^{\pm}\mu^{\pm} + eee + ee\mu + e\mu\mu + \mu\mu\mu, N_j \ge 2$					
$400 < H_{\rm T} < 700 GeV$	$N_b = 1$	$E_{\rm T}^{\rm miss} > 40 { m ~GeV}$	SRVLQ0		
	$N_b = 2$		SRVLQ1	SR4t0	
	$N_b \ge 3$		SRVLQ2	SR4t1	
	$N_b = 1$	$40 < E_{\rm T}^{\rm miss} < 100 GeV$	SRVLQ3		
		$E_{\rm T}^{\rm miss} \ge 100 \ GeV$	SRVLQ4		
$H_{\rm T} \ge 700 \ GeV$	$N_b = 2$	$40 < E_{\rm T}^{\rm miss} < 100 GeV$	SRVLQ5	SR4t2	
		$E_{\rm T}^{\rm miss} \ge 100 \ GeV$	SRVLQ6	SR4t3	
	$N_b \ge 3$	$E_{\rm T}^{\rm miss} > 40 { m ~GeV}$	SRVLQ7	SR4t4	
$e^+e^+, e^+\mu^+, \mu^+\mu^+, N_j \in [2, 4], \Delta \phi_{\ell\ell} > 2.5$					
$H_{\rm T} > 450 \ GeV$	$N_b \ge 1$	$E_{\rm T}^{\rm miss} > 40 \ GeV$	SRttee, SI	$Rtte\mu$, $SRtt\mu\mu$	

Same-sign leptons

	SRVLQ0	SRVLQ1/SR4t0	SRVLQ2/SR4t1
$t\bar{t}W/Z$	$16.2 \pm 0.3 \pm 7.0$	$12.6 \pm 0.3 \pm 5.4$	$1.24 \pm 0.09 \pm 0.53$
$t\bar{t}H$	$2.5 \pm 0.1 \pm 0.3$	$1.8 \pm 0.1 \pm 0.2$	$0.26 \pm 0.03 \pm 0.05$
Dibosons	$11.2 \pm 0.6 \pm 2.8$	$0.95 \pm 0.19 \pm 0.25$	$0.07 \pm 0.12 \pm 0.05$
Fake/Non-prompt	$42.1 \pm 5.4 \pm 24.6$	$8.61 \pm 2.34 \pm 5.02$	$1.17 \pm 0.82 \pm 0.68$
Q mis-Id	$20.8 \pm 0.7 \pm 5.2$	$15.1 \pm 0.6 \pm 3.5$	$0.74 \pm 0.11 \pm 0.18$
Other bkg.	$1.76 \pm 0.13 \pm 0.17$	$0.75 \pm 0.04 \pm 0.10$	$0.10 \pm 0.08 \pm 0.03$
Total bkg.	$94.5 \pm 5.4 \pm 24.9$	$40.0 \pm 2.4 \pm 7.3$	$3.6 \pm 0.9 \pm 0.8$
Data	107	54	6
<i>p</i> -value	0.36	0.12	0.24

	SRVLQ3	SRVLQ4
$t\bar{t}W/Z$	$2.07 \pm 0.10 \pm 0.89$	$3.14 \pm 0.13 \pm 1.35$
$t\bar{t}H$	$0.40 \pm 0.04 \pm 0.07$	$0.57 \pm 0.05 \pm 0.07$
Dibosons	$2.36 \pm 0.29 \pm 0.61$	$2.03 \pm 0.25 \pm 0.49$
Fake/Non-prompt	$3.09 \pm 1.29 \pm 1.80$	$4.24 \pm 1.59 \pm 2.47$
Q mis-Id	$1.72 \pm 0.22 \pm 0.63$	$1.45 \pm 0.17 \pm 0.52$
Other bkg.	$0.22 \pm 0.08 \pm 0.03$	$0.41 \pm 0.10 \pm 0.06$
Total bkg.	$9.87 \pm 1.35 \pm 2.10$	$11.9 \pm 1.6 \pm 2.8$
Data	7	10
<i>p</i> -value	0.83	0.71

SUSY2015, Lake Tahoe, USA

Same-sign leptons

	SRVLQ5/SR4t2	SRVLQ6/SR4t3	SRVLQ7/SR4t4
$t\bar{t}W/Z$	$1.87 \pm 0.09 \pm 0.80$	$2.46 \pm 0.11 \pm 1.06$	$0.57 \pm 0.05 \pm 0.25$
$t\bar{t}H$	$0.31 \pm 0.04 \pm 0.05$	$0.44 \pm 0.04 \pm 0.06$	$0.08 \pm 0.02 \pm 0.02$
Dibosons	$0.33 \pm 0.14 \pm 0.10$	$0.04 \pm 0.12 \pm 0.03$	$0.00 \pm 0.12 \pm 0.00$
Fake/Non-prompt	$1.03 \pm 0.97 \pm 0.60$	$0.00 \pm 1.02 \pm 0.28$	$0.04 \pm 0.83 \pm 0.24$
Q mis-Id	$1.17 \pm 0.16 \pm 0.38$	$1.09 \pm 0.14 \pm 0.34$	$0.30 \pm 0.09 \pm 0.10$
Other bkg.	$0.16 \pm 0.08 \pm 0.02$	$0.23 \pm 0.08 \pm 0.05$	$0.14 \pm 0.08 \pm 0.08$
Total bkg.	$4.9 \pm 1.0 \pm 1.0$	$4.3 \pm 1.1 \pm 1.1$	$1.1 \pm 0.9 \pm 0.4$
Data	6	12	6
<i>p</i> -value	0.46	0.029	0.036