The Improved Bounds on the Heavy Neutrino Productions at the LHC

Arindam Das
University of Alabama

In Collaboration with Nobuchika Okada (University of Alabama) (Draft in preparation)

25th August SUSY 2015 –Alternative Theory Track, UC Davis Lake Tahoe, California

Introduction

- Standard Model (SM) Neutrinos are massless
- Recent experiments on the neutrino oscillation disproves the massless-ness of the SM neutrinos.
- Extend the SM
- Seesaw mechanism

Right Handed singlet Majorana neutrino (N_R)

$$\bullet \mathcal{L}_{Seesaw} \supset -m_D \bar{\nu_L} N_R - \frac{1}{2} M \bar{N_R}^C N_R + h.c : m_{\nu} = \begin{pmatrix} 0 & m_D \\ m_D & M \end{pmatrix} \bullet m_{\nu} = m_D \boxed{\frac{m_D}{M}}$$

Inverse Seesaw Mechanism

Mohapatra, PRL 56, 561 (1986), Mohapatra and Valle, PRD 34, 1642 (1986)

Heavy (Pseudo-Dirac) neutrino can be produced at high energy colliders

Charged and the neutral current interactions

The flavour eigenstate (ν) in terms of the mass eigenstates

$$u \simeq \mathcal{N}
u_m + \mathcal{R} \mathcal{N}_m, \;\; \mathcal{N} = (1 - \frac{1}{2} \mathcal{R}^* \mathcal{R}^T) U_{MNS}$$

$$\mathcal{L}_{CC} = -rac{g}{\sqrt{2}}W_{\mu}\overline{e_{m}}\gamma^{\mu}P_{L}\left(\mathcal{N}\nu_{m}+\mathcal{R}N_{m}
ight) + h.c.,$$

$$\mathcal{L}_{NC} = -\frac{g}{2c_{w}} Z_{\mu} \left[\overline{\nu_{m}} \gamma^{\mu} P_{L} (\mathcal{N}^{\dagger} \mathcal{N}) \nu_{m} + \overline{N_{m}} \gamma^{\mu} P_{L} (\mathcal{R}^{\dagger} \mathcal{R}) N_{m} \right]$$

$$- \frac{g}{2c_{w}} Z_{\mu} \left[\overline{\nu_{m}} \gamma^{\mu} P_{L} (\mathcal{N}^{\dagger} \mathcal{R}) N_{m} + h.c. \right]$$

 e_m , ν_m , N_m are the three generations of the leptons in the vector form.

AD and Okada PRD 88 (2013) 113001

Various N production processes at LHC

O-jet Process

$$pp \to N\ell^{\pm}$$

1-jet processes $pp \to N\ell^{\pm}j$

(AD, Dev and Okada PLB 735 (2014) 364–370)

2 − jet processes $pp \rightarrow N\ell^{\pm}jj$

b) Quark-Gluon

b) Quark-gluon

 W^{+}

Dev, Pilaftsis and Yang PRL 112 (2014)8, 081801 Alva, Han, Ruiz JHEP 1502 (2015) 072

Production cross section normalized by the square of the mixing

Contributions from the quark-quark and the quark-gluon interaction from the 1-jet processes normalized by the square of the mixing

Contributions from the quark-quark, quark-gluon and the gluon-gluon interactions from the 2-jet processes normalized by the square of the mixing

Cross sections of the 1-jet (proton-photon from proton) and 2-jet QED processes normalized by the square of the mixing

Signal Process at the 8 TeV LHC

ATLAS Results, $p_T^j > 20$ GeV @ 20.3 fb⁻¹ 8 TeV , same-sign di- μ

CMS Results, $p_T^{-j} > 20$ GeV @ 19.7 fb⁻¹ 8 TeV same-sign di- μ

CMS Criteria for Anomalous multi-lepton Search @ 8 TeV, 19.7 fb⁻¹ (Table-III , Phys. Rev. D 90, 032006)

- (i) The transverse momentum of each lepton: $p_T^\ell > 10$ GeV.
- (ii) The transverse momentum of at least one lepton: $p_T^{\ell, \mathrm{leading}} > 20$ GeV. (iii) The jet transverse momentum: $p_T^j > 30$ GeV.
- (iv) The pseudo-rapidity of leptons: $|\eta^\ell| < 2.4$ and of jets: $|\eta^j| < 2.5$. (v) The lepton-lepton separation: $\Delta R_{\ell\ell} > 0.1$ and the lepton-jet separation: $\Delta R_{\ell j} > 0.3$.
- (vi) The invariant mass of each OSSF lepton pair: a) $m_{\ell^+\ell^-} < 75$ GeV and b) $m_{\ell^+\ell^-} > 105$ GeV. (vii) The scalar sum of the jet transverse momenta: $H_T < 200$ GeV.
- (viii) The missing transverse energy: $\not\!\!E_T < 50$ GeV.

 •Case I : $m_{\ell^+\ell^-} < 75$: CMS has observed 510 events with the SM background
- expectation 560 \pm 87 events . Upper limit of 510 (560 87) =37 events. •Case II: $m_{\ell^+\ell^-} > 105$: CMS has observed 178 events with the SM background expectation 200 \pm 35 events. Upper limit of 178 (200 35) =13 events.
- These set a 95 % CL on the mixing parameter as a function of the heavy neutrino mass.

Upper bound on the Mixing Square from ATLAS same-sign di-lepton @ 8 TeV

Upper bound on the Mixing Square from CMS same-sign di-lepton @ 8 TeV

M_N=100 GeV, 0j: 0.005085, 1j:0.00433, 2j: 0.00405 @ 8 TeV, 19.7 fb⁻¹

M_N=100 GeV, 0j: 0.000173, 1j:0.000143, 2j: 0.0001315 @ 14 TeV, 300 fb⁻¹

Upper bound on the Mixing Square from Anomalous multi-lepton search @ 8 TeV

CONCLUSIONS

We studied the seesaw mechanism through Majorana heavy neutrinos and inverse seesaw mechanism through the pseudo-Dirac heavy neutrinos.

The production mechanisms of the Heavy Neutrino at the LHC.

Seesaw:

We studied a variety of initial states such as quark-quark, quark-gluon and the gluon-gluon fusions.

We used the same sign di-lepton signal for the heavy neutrino production in seesaw mechanism.

Inverse Seesaw

Using the recent ATLAS and CMS analyses @ 8 TeV for the same sign di-lepton data we improve the upper limit on $|V_{IN}|^2$ for all the QED and QCD processes.

We used the CMS results @ 8 TeV to improve the upper bound on $|V_{IN}|^2$ from the tri-lepton signal including all the QED and QCD processes.

We also put tentative bounds @ 14 TeV LHC for the above signals.