Chiral low-energy physics from squashed branes in deformed $\mathcal{N}=4$ SYM

Harold Steinacker

Department of Physics, University of Vienna

SUSY 2015, Lake Tahoe

H.S., J. Zahn arXiv:1409.1440, H.S. arXiv:1504.05703

Motivation

- simplicity:
 - re-consider softly broken SU(N) $\mathcal{N}=4$ SYM cubic potential \Rightarrow remarkable new vacua, extended SSM chiral low energy physics possible for suitable Higgs VEV
- Higgs mechanism \Rightarrow dynamical generation of extra dimensions $\mathbb{R}^4 \times \mathcal{K}_N$

Madore, Myers, Arkani-Hamed etal, HS-Zoupanos-Chatzistavrakidis, Aschieri, Manousselis, O'Connor etal, Polchinski-Strassler, Andrews-Dorey....

 aspects of string theory (intersecting branes, KK modes ...) realized in 4-D gauge theory

<u>outline</u>

- SU(N) $\mathcal{N}=4$ SYM with cubic (flux) terms
- new vacuum solutions with SU(3) structure
- geometric interpretation: self-intersecting fuzzy branes in extra dimensions
 - zero modes & chiral fermions
 - KK modes
- extended SSM from stacks of squashed branes mirror particles

$\mathcal{N}=4$ SYM and squashed fuzzy branes

starting point: $SU(N) \mathcal{N} = 4 \text{ SUSY}$

$$S = \int d^4x \frac{1}{4g^2} tr \left(-F^{\mu\nu}F_{\mu\nu} - 2D^{\mu}\Phi^a D_{\mu}\Phi_a + [\Phi^a, \Phi^b][\Phi_a, \Phi_b] \right) + tr \left(\bar{\Psi}\gamma^{\mu} (i\partial_{\mu} + [A_{\mu}, .])\Psi + \bar{\Psi}\Gamma^a[\Phi_a, \Psi] \right)$$

- N = 1 SYM in 10 D dim. red. to 4D
- 6 scalar fields Φ^a, global SO(6)_B
- $(\gamma^{\mu}, \Gamma^{a}) = \Gamma^{A}$... 10D Clifford generators, $\Psi \rightarrow 4$ Weyl fermions
- most symmetric 4D gauge theory, UV finite

$\mathcal{N} = 4$ SYM beautiful but too "round" for physics

more structure:

- spontaneous symmetry breaking (SSB): still no "interesting" (chiral) low-energy physics
- add soft susy breaking terms to potential

scalar potential:
$$V[\Phi] = (V_4[\Phi] + V_{soft}[\Phi]),$$

$$V_4[\Phi] = -\frac{1}{4} \text{tr}[\Phi_a, \Phi_b][\Phi^a, \Phi^b],$$

$$V_{\text{soft}}[\Phi] = \text{tr}(im f_{abc} \Phi^a \Phi^b \Phi^c + M_{ab}^2 \Phi^a \Phi^b)$$

f_{abc} ... tot. antisymm., soft SUSY breaking

$\mathcal{N} = 4$ SYM beautiful but too "round" for physics

more structure:

- spontaneous symmetry breaking (SSB): still no "interesting" (chiral) low-energy physics
- add soft susy breaking terms to potential

scalar potential:
$$V[\Phi] = (V_4[\Phi] + V_{soft}[\Phi]),$$

$$V_4[\Phi] = -\frac{1}{4} \text{tr}[\Phi_a, \Phi_b][\Phi^a, \Phi^b],$$

$$V_{\text{soft}}[\Phi] = \text{tr}(im f_{abc} \Phi^a \Phi^b \Phi^c + M_{ab}^2 \Phi^a \Phi^b)$$

fabc ... tot. antisymm., soft SUSY breaking

- known: $f_{abc} \sim \epsilon_{abc}$: \rightarrow fuzzy sphere solutions $\Phi^a \sim J^a$
- new: f_{abc} ∼ truncated su(3) structure constants
 - \rightarrow squashed coadjoint SU(3) orbits

H.S., J. Zahn arXiv:1409.1440, H.S. arXiv:1504.05703

dim.less fields $\Phi_a = mY_a$, label by $\mathfrak{su}(3)$ roots

$$\begin{array}{ll} Y_1^{\pm} &= \frac{1}{\sqrt{2}} (Y_4 \pm i Y_5) \equiv Y_{\pm \alpha_1}, \\ Y_2^{\pm} &= \frac{1}{\sqrt{2}} (Y_6 \mp i Y_7) \equiv Y_{\pm \alpha_2}, \\ Y_3^{\pm} &= \frac{1}{\sqrt{2}} (Y_1 \mp i Y_2) \equiv Y_{\pm \alpha_3} \end{array}$$

let $f_{abc} = c_{abc}|_{a,b,c\neq 3,8}$... structure constants of $\mathfrak{su}(3)$ without Cartan observe

$$\operatorname{Tr}(if_{abc}Y^aY^bY^c) \sim \operatorname{Tr}(\varepsilon_{ijk}Y_i^+Y_j^+Y_k^+ + h.c.)$$

breaks $SO(6)_R$ to $SU(3)_R$

eom:

Motivation

$$0 = (\Box_4 + m^2 \Box_Y) Y_i^+ + 4m^2 \varepsilon_{ijk} Y_j^- Y_k^-$$

\(\Box \equiv \equiv [Y^a, [Y_a, .]]

squashed SU(3) brane solutions $C_N[\mu]$

$$Y_{+\alpha} = r_i \pi_{\mu} (T_{+\alpha})$$

... root generators of $\mathfrak{su}(3)$, for any rep. \mathcal{H}_{μ}

990

symmetries: background $Y_i^{\pm} = T_i^{\pm}$

• breaks $SU(3)_R \rightarrow U(1) \times U(1)$ up to gauge trafo

residual symmetry: $U(1)_{K_1} \times U(1)_{K_2}$ generated by

$$K_i := \underbrace{2\tau_i}_{\in SU(3)_R} - \underbrace{[H_{\alpha_i},.]}_{gauge}$$

- SU(N) gauge symmetry completely broken (Higgs)
 - → massive KK modes!

organization:

via $SU(3)_Y \subset SU(N)$ generated by $Y_i^{\pm} \sim T_{\pm \alpha_i}$ (not symmetry!)

scalar fields transform as $\begin{cases} (3) \text{ under } SU(3)_R \\ (8) - 2 \text{ under } SU(3)_Y \end{cases}$

fluctuation & KK modes

determine fluctuation modes & masses on new vacua

all fields (scalar, gauge fields, fermions) take values in

$$\mathfrak{u}(N) = \mathit{Mat}(\mathcal{H}_{\mu}) \cong \mathcal{H}_{\mu} \otimes \mathcal{H}_{\mu}^* = \oplus_{\Lambda} \mathcal{H}_{\Lambda} \ \ \text{of} \ \ \mathit{SU}(3)_{Y}$$

expand into $SU(3)_Y$ harmonics: gauge fields:

$$A_{\mu}(x) = \sum A_{\mu}^{(M,\Lambda)}(x) \underbrace{\hat{Y}_{M}^{\Lambda}}_{SU(3) \text{ y modes}}$$

scalar fields:

$$\Phi_{a} = mY^{a} + \varphi^{a}(x)$$
$$\varphi_{a}(x) = \sum \varphi_{a}^{(M,\Lambda)}(x) \hat{Y}_{M}^{\Lambda}$$

fermions ... (similar)

massive gauge bosons as KK modes

<u>Higgs effect:</u> gauge modes $A_{\mu}(x) = \sum A_{\mu}^{(M,\Lambda)}(x) \hat{Y}_{M}^{\Lambda}$ acquire mass

$$\int \mathrm{tr}(D_{\mu}Y_{a})^{\dagger}D_{\mu}Y_{a} = \int \mathrm{tr}(\partial_{\mu}Y_{a}^{\dagger}\partial_{\mu}Y_{a} + \sum_{\Lambda,M} \textbf{\textit{m}}_{\Lambda,M}^{2} \textbf{\textit{A}}_{\mu,(\Lambda M)}^{\dagger} \textbf{\textit{A}}_{(\Lambda,M)}^{\mu}) + \textbf{\textit{S}}_{\textit{int}}$$

given by

$$\square_{Y} \hat{Y}_{M}^{\Lambda} \equiv [Y^{a}, [Y_{a}, \hat{Y}_{M}^{\Lambda}]] = m_{(\Lambda M)}^{2} \hat{Y}_{M}^{\Lambda}$$

 \Rightarrow tower of massive KK modes $A_{\mu,(\Lambda M)}(x)$, mass $m_{(\Lambda M)}^2 > 0$

(no massless gauge modes)

geometric interpretation of Higgs effect

massive gauge modes = KK modes on squashed brane $C_N[\mu]$,

 \rightarrow effect. gauge theory on $\mathbb{R}^4 \times \mathcal{C}_N[\mu]$

similar for scalar fields & fermions

Motivation

internal geometry: squashed fuzzy coadjoint orbits

claim: $Y_a = \pi_u(T_a)$... quantized coadjoint SU(3) orbit, projected along Cartan directions

$$C[\mu] \hookrightarrow \mathbb{R}^{8} \quad \stackrel{\mathbf{\Pi}}{\rightarrow} \quad \mathbb{R}^{6}$$
$$(y^{a})_{a=1,\dots,8} \quad \mapsto \quad (y^{a})_{a=1,2,4,5,6,7}$$

4- or 6-dimensional variety in \mathbb{R}^6 , self-intersecting

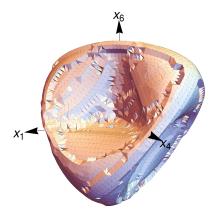
H.S., J. Zahn arxiv:1409.1440

4-dim branes = squashed $\mathbb{C}P^2$:

triple self-intersection at origin

⇒ zero-modes: strings linking sheets at origin

computer measurement of $Y^a = \pi_{\mu}(T^a)$:



squashed $C_N[\mu]$ for $\mu = (20, 0)$.

L. Schneiderbauer, H.S. (unpublished)

scalar fluctuation modes

scalar fluctuations: $\phi_{\alpha} = mY_{\alpha} + \varphi_{\alpha}$

quartic potential for φ_{α} :

$$\begin{split} \textbf{\textit{V}}_2[\varphi] &= \text{tr} \varphi^\alpha \big(\Box_{\textbf{\textit{Y}}} + \textbf{\textit{2}} \not \!\!\!\! D_{\text{diag}} - \textbf{\textit{2}} \not \!\!\!\!\! D_{\text{mix}} \big) \varphi_\alpha, \\ (\not \!\!\!\! D_{\text{mix}} \varphi)_i^+ &= -\varepsilon_{\textit{ikj}} [\textbf{\textit{Y}}_k^-, \varphi_j^-], \qquad \tau \not \!\!\!\! D_{\text{mix}} = -\not \!\!\!\!\! D_{\text{mix}} \tau \end{split}$$

can show:

- no negative modes (!!)
- ∃ zero modes: regular & exceptional H.S., J. Zahn arxiv:1409.1440

• regular zero modes: corresponding to $\not \!\!\! D_{\rm mix} \phi_{\rm o}^{(0)} = 0$

6 zero modes for each
$$\mathcal{H}_{\Lambda} \subset \textit{Mat}(\mathcal{H}_{\mu})$$

(corresp. to 6 extremal charges of $U(1)_{K_i}$ in $\mathcal{H}_{\Lambda} \otimes (8)$)

Fermions

geometric interpretation:

string between coincident sheets of $\mathcal{C}[\mu]$ at origin

e.g.
$$\varphi_{\Lambda} = |\Omega\mu\rangle\langle\mu|$$
 , $|\mu\rangle$... coherent states

exceptional zero modes:

in particular: 6 Goldstone bosons (from $SU(3)/U(1)\times U(1)$)

(verified numerically)

fermions

Dirac operator on squashed $\mathcal{C}_{\mathcal{N}}[\mu]$:

$$\mathcal{D}_{(int)}\Psi = 2\sum_{i=1}^{3} \left(\gamma_i [Y_i^+, .] + \gamma_i^{\dagger} [Y_1^-, .] \right)$$

$$\{\gamma_i, \gamma_j^{\dagger}\} = \delta_{ij} \; ... \; SO(6)$$
 Clifford algebra

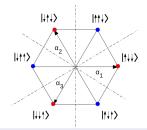
zero modes:

$$D_{(int)}\Psi_{\Lambda}=0$$

- have distinct chirality determined by quantum numbers Λ (!)
- in one-to-one correspondence to regular zero modes
 - (fermionic strings connecting branes)
- except for exceptional zero modes (SUSY broken)

chiral fermions

for each $\mathcal{H}_{\Lambda} \subset Mat(\mathcal{H}_{\mu})$:



3 generations of Weyl/ Majorana spinors on \mathbb{R}^4 (Weyl rotations $\frac{2\pi}{3}$) chirality $\gamma_5 \Psi_{\Lambda'} = (+-)\Psi_{\Lambda'}$ determined by $U(1)_{K_i}$ charges $\Psi_{-\Lambda'} = C\Psi_{\Lambda'}$

towards interesting physics:

stacks of squashed $\mathcal{D}_i = \mathcal{C}[\mu_i]$ branes (=reducible rep.'s of $\mathfrak{su}(3)$)

$$Y^a = \begin{pmatrix} Y^a_{\mu_1} & & \\ & Y^a_{\mu_2} \end{pmatrix} \quad \cong \ \begin{pmatrix} \mathcal{D}_1 & & \\ & \mathcal{D}_2 \end{pmatrix}$$

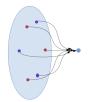
off-diagonal fermions

$$\Psi = \begin{pmatrix} 0 & \Psi_{12} \\ \Psi_{21} & 0 \end{pmatrix}$$

zero-modes in bi-fundamental $\mathcal{H}_1 \otimes \mathcal{H}_2^*$ of $U(N_1) \times U(N_2)$

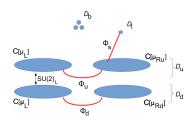
e.g. quarks = links $\mathcal{C}[\mu]$ with 3 "baryonic" point-branes:

quarks:
$$\Psi_{12} = |\mu_i\rangle_1\langle 0_i|_2 \in \mathcal{H}_\mu \otimes \mathbb{C}^3$$



3+3 chiral zero-modes attached to $\mathcal{C}[\mu]$

A standard-model-like brane configuration



gauge symmetry $U(2)_L \times U(1)_{Ru} \times U(1)_{Rd} \times U(1)_I \times U(3)_c$ assume Higgs $\phi_u, \phi_d, \phi_S \neq 0$ connecting branes (zero modes!) unbroken symm: $SU(3)_c \times U(1)_Q \times U(1)_B$

$$Q = \frac{1}{2} (\mathbf{1}_{Ru} + \mathbf{1}_{Lu} - \mathbf{1}_{Rd} - \mathbf{1}_{Ld} + \mathbf{1}_{I} - \frac{1}{3} \mathbf{1}_{b})$$

mass $O(\phi)$: $SU(2)_L \times U(1)_Y$

"anomalous" at low energy (\rightarrow massive): $U(1)_5$, $U(1)_B$

fermions with SM quantum numbers arise as zero modes linking branes

$$\Psi = \begin{pmatrix} *_{2} & H_{d} & H_{u} & I_{L} & Q_{L} \\ & * & e' & e_{R} & d_{R} \\ & & * & \nu_{R} & u_{R} \\ & & *_{3} \end{pmatrix},$$

$$(Q, Y) = \begin{pmatrix} * & \binom{(1,1)}{(0,1)} & \binom{(0,-1)}{(-1,-1)} & \binom{(0,-1)}{(-1,-1)} & \binom{(\frac{2}{3},\frac{1}{3})}{(-1,-2)} & \binom{(\frac{2}{3},\frac{1}{3})}{(-1,-2)} & \binom{(\frac{2}{3},\frac{1}{3})}{(-1,-2)} & \binom{(\frac{2}{3},\frac{1}{3})}{(\frac{2}{3},\frac{4}{3})} \\ & & * & \binom{2}{3},\frac{4}{3} \end{pmatrix}$$

$$Q_{L} = \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix}, \qquad I_{L} = \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix},$$

- 3 generations (Z₃ Weyl rotations!)
- all standard model fermions, 2 Higgs doublets, + superpartners
- extra fermions $\nu_R, u', e', \lambda \sim U(1)_L$ etc., no exotic charges

chirality: index =0 in $\mathcal{N} = 4$ SYM!

but:

rich Higgs sector (=zero modes)
 cubic potential → SSB

H.S. arXiv:1504.05703

■ ∃ suitable Higgs VEV's such that

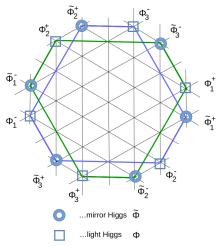
$$\Psi = \left\{ \begin{array}{ll} \text{light fermions}, & \text{chirality of S.M.} & \text{light} \\ \text{mirror fermions}, & \text{opposite chirality} & \text{heavy} \end{array} \right\}$$

protected by unbroken $U(1)_{K_i}$

- mirror fermions couple to mirror Higgs,
 - → acquire larger masses
- ν_R (light & mirror)

can obtain extended chiral S.M. at low energy, + heavier mirror sector

separation of Higgs components into light & mirror:



separated by cubic potential

summary

- \exists rich class of vacuum solutions of deformed SU(N) $\mathcal{N}=4$ SYM \rightarrow self-intersecting extra dim $\mathbb{R}^4 \times \mathcal{C}[\mu]$
- chiral low-energy physics possible, + mirror sector at high scale
- can be surprisingly similar to standard model in broken phase
- open issues: elaborate rich Higgs sector (zero modes) sufficient hierarchy for mirror sector? quantum corrections

(soft) SUSY breaking:

action is almost $\mathcal{N}=\mathbf{1}^*$ deformation of $\mathcal{N}=\mathbf{4}$ SYM: consider superpotential

$$W = \frac{\sqrt{2}}{g} \text{tr}([\Phi_1^+, \Phi_2^+] \Phi_3^- - m\Phi_3^-\Phi_3^-)$$
 ... $\mathcal{N} = 1^*$

(declare $\Phi_1^+\Phi_2^+, \Phi_3^-$ as holomorphic coords)

→ effective potential

$$\begin{array}{ll} V(\Phi) & = -\frac{1}{4g^2} \mathrm{tr}[\Phi^{\alpha}, \Phi^{\beta}][\Phi_{\alpha}, \Phi_{\beta}] \\ & + 4\frac{1}{g^2} \mathrm{tr}(-m[\Phi_1^+, \Phi_2^+]\Phi_3^+ - m[\Phi_2^-, \Phi_1^-]\Phi_3^- + 2m^2\Phi_3^+\Phi_3^-). \end{array}$$

 \equiv present potential, however, mass $M_3^2 = 2m^2$ too large for squashed SU(3) brane solutions

