SUSY2015 @ Lake Tahoe, 25 August 2015

Aspects of dynamical supersymmetry breaking and its mediation on magnetized tori

Hiroyuki Abe, Keigo Sumita & Tokihiro Watanabe Waseda University

Work in progress

Contents

- I. Introduction
 - SYM on magnetized tori
 - Phenomenological models
- II. Aspects of DSB on magnetized tori
 - DSB on a local minimum (ISS model)
 - Embedding DSB sector
 - Numerical results
- III. Summary

Contents

- I. Introduction
 - SYM on magnetized tori
 - Phenomenological models
- II. Aspects of DSB on magnetized tori
 - DSB on a local minimum (ISS model)
 - Embedding DSB sector
 - Numerical results
- III. Summary

SYM on magnetized tori

Basic features

D. Cremades, L. E. Ibanez & F. Marchesano '04

- Degenerated chiral zero-modes appear
- The degeneracy is determined by the number of fluxes
- The zero-mode wavefunctions are analytically obtained
- **Applications**
 - Phenomenological models are proposed
 - e.g. T. Kobayashi, H. Ohki, A. Oikawa, K. Sumita & H.A. '13

Further aspects

D-brane interpretations and dual descriptions

Field contents in 10D SYM on T^6

10D vector : $A_M = (A_\mu, A_m) = (A_\mu, A_i)$ i = 1,2,3

$$A_{i} \equiv -\frac{1}{\operatorname{Im} \tau_{i}} (\tau_{i}^{*} A_{2+2i} - A_{3+2i}), \qquad \bar{A}_{\bar{i}} \equiv (A_{i})^{\dagger}$$

10D Majorana-Weyl spinor : $\lambda = (\lambda_0, \lambda_i)$

Field contents in 10D SYM on T^6

10D vector : $A_M = (A_\mu, A_m) = (A_\mu, A_i)$ i = 1,2,3

$$A_i \equiv -\frac{1}{\operatorname{Im} \tau_i} (\tau_i^* A_{2+2i} - A_{3+2i}), \quad \bar{A}_{\bar{i}} \equiv (A_i)^{\dagger}$$

10D Majorana-Weyl spinor : $\lambda = (\lambda_0, \lambda_i)$

 $\mathcal{N} = 1$ supermultiplets (superfields):

 $V = \{A_{\mu}, \lambda_0\}, \quad \phi_i = \{A_i, \lambda_i\}$ U(N) adjoints

Notations in T. Kobayashi, H. Ohki, K. Sumita & H.A. '12

Magnetic flux background

Abelian flux & Wilson-line in U(N) adjoint matrix

Notations in T. Kobayashi, H. Ohki, K. Sumita & H.A. '12

Magnetic flux background

Abelian flux & Wilson-line in U(N) adjoint matrix

$$\langle A_i \rangle = \frac{\pi}{\operatorname{Im} \tau_i} \left(M^{(i)} \, \bar{z}_{\bar{i}} + \bar{\zeta}_i \right)$$

 $M^{(i)} = \operatorname{diag}(M_1^{(i)}, M_2^{(i)}, \dots, M_N^{(i)}), \quad \text{Magnetic fluxes}$ $\zeta_i = \operatorname{diag}(\zeta_1^{(i)}, \zeta_2^{(i)}, \dots, \zeta_N^{(i)}), \quad \text{Wilson-lines}$

$$M_a^{(i)} \neq M_b^{(i)} \quad \forall a, b \implies U(N) \rightarrow U(1)^N$$

Notations in T. Kobayashi, H. Ohki, K. Sumita & H.A. '12

Contents

I. Introduction

- SYM on magnetized tori
- Phenomenological models
- II. Aspects of DSB on magnetized tori
 - DSB on a local minimum (ISS model)
 - Embedding DSB sector
 - Numerical results
- III. Summary

10D U(8) SYM model

T. Kobayashi, H. Ohki, K. Sumita & H.A. '12

Magnetic fluxes $U(8) \rightarrow U(4)_{c} \times U(2)_{L} \times U(2)_{R}$ $F_{2+2r,3+2r} = 2\pi \begin{pmatrix} M_{C}^{(r)} \mathbf{1}_{4} & & \\ & M_{L}^{(r)} \mathbf{1}_{2} & \\ & & M_{R}^{(r)} \mathbf{1}_{2} \end{pmatrix}$ r = 1,2,3

10D U(8) SYM model

T. Kobayashi, H. Ohki, K. Sumita & H.A. '12

Magnetic fluxes $U(8) \rightarrow U(4)_C \times U(2)_L \times U(2)_R$ $F_{2+2r,3+2r} = 2\pi \begin{pmatrix} M_C^{(r)} \mathbf{1}_4 & & \\ & M_L^{(r)} \mathbf{1}_2 & \\ & & & M_R^{(r)} \mathbf{1}_2 \end{pmatrix}$ r = 1,2,3

Wilson-lines $\rightarrow U(3)_{C} \times U(2)_{L} \times U(1)_{C' \times} U(1)_{R' \times} U(1)_{R''}$

10D U(8) SYM model

T. Kobayashi, H. Ohki, K. Sumita & H.A. '12

Flux ansatz

$$(M_C^{(1)}, M_L^{(1)}, M_R^{(1)}) = (0, +3, -3), (M_C^{(2)}, M_L^{(2)}, M_R^{(2)}) = (0, -1, 0), (M_C^{(3)}, M_L^{(3)}, M_R^{(3)}) = (0, 0, +1),$$

Three generations of quarks and leptons and six generations of Higgs

SUSY conditions

$$\frac{h^{\bar{i}j}\left(\bar{\partial}_{\bar{i}}\langle A_j \rangle + \partial_j \langle \bar{A}_{\bar{i}} \rangle\right)}{\epsilon^{jkl} e_k^{\ k} e_l^{\ l} \partial_k \langle A_l \rangle} = 0, \qquad \Leftrightarrow \quad \mathcal{A}^{(1)} / \mathcal{A}^{(2)} = \mathcal{A}^{(1)} / \mathcal{A}^{(3)} = 3.$$

T. Kobayashi, H. Ohki, A. Oikawa, K. Sumita & H.A. '13

Zero-modes in ϕ_i

$\phi_1^{\mathcal{I}_{ab}} =$	$ \begin{pmatrix} \Omega_{C}^{(1)} \\ \Xi_{C'C}^{(1)} \\ \hline \Xi_{LC}^{(1)} \\ \hline 0 \\ 0 \\ 0 \\ \end{pmatrix} $	$ \begin{array}{c} \Xi_{CC'}^{(1)} \\ \Omega_{C'}^{(1)} \\ \overline{\Xi}_{LC'}^{(1)} \\ 0 \\ 0 \end{array} $	$ \begin{array}{c} 0 \\ 0 \\ \Omega_L^{(1)} \\ 0 \\ 0 \end{array} $	$ \begin{array}{c} \Xi^{(1)}_{CR'} \\ \Xi^{(1)}_{C'R'} \\ H^K_u \\ \Omega^{(1)}_{R'} \\ \Xi^{(1)}_{R''R'} \end{array} $	$ \begin{array}{c} \Xi_{CR''}^{(1)} \\ \Xi_{C'R''}^{(1)} \\ \hline H_d^K \\ \Xi_{R'R''}^{(1)} \\ \Omega_{R''}^{(1)} \end{array} $		ϕ_2^2	$\sum_{ab} =$		$ \frac{\Omega_{C}^{(2)}}{\Xi_{C'C}^{(2)}} \\ 0 \\ 0 \\ 0 $	$ \begin{array}{c} \Xi_{CC'}^{(2)} \\ \Omega_{C'}^{(2)} \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} $	$ \begin{array}{c} Q^{I} \\ L^{I} \\ \Omega_{L}^{(2)} \\ 0 \\ 0 \end{array} $	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{array}{c} 0 \\ 0 \\ \hline \\ 0 \\ \Xi^{(2)}_{R'R''} \\ \Omega^{(2)}_{R''} \end{array} \right)$
				($\Omega_C^{(3)} = \Xi_C^{(3)} = \Omega^{(3)}$	(3) CC' (3)	0	0	0					

		$\Xi_{C'C}^{(0)}$	$\Omega_{C'}^{(0)}$	0	0	0
$\phi_3^{\mathcal{I}_{ab}}$	=	0	0	$\Omega_L^{(3)}$	0	0
		U^J	N^J	0	$\Omega_{B'}^{(3)}$	$\Xi^{(3)}_{B'B''}$
		D^{J}	E^J	0	$\Xi_{R''R'}^{(3)}$	$\Omega_{R^{\prime\prime}}^{(3)}$

T. Kobayashi, H. Ohki, A. Oikawa, K. Sumita & H.A. '13

Zero-modes in ϕ_i

$$\phi_{1}^{\mathcal{I}_{ab}} = \begin{pmatrix} \Omega_{C}^{(1)} & \Xi_{CC'}^{(1)} & 0 & \Xi_{CR'}^{(1)} & \Xi_{CR''}^{(1)} \\ \Xi_{CC}^{(1)} & \Omega_{C'}^{(1)} & 0 & \Xi_{C'R'}^{(1)} & \Xi_{C'R''}^{(1)} \\ \hline \Xi_{LC}^{(1)} & \Xi_{LC'}^{(1)} & \Omega_{L}^{(1)} & H_{u}^{K} & H_{d}^{K} \\ \hline 0 & 0 & 0 & \Omega_{R'}^{(1)} & \Xi_{R'R''}^{(1)} \\ \hline 0 & 0 & 0 & 0 & \Xi_{R''R'}^{(1)} & \Omega_{R''}^{(1)} \\ \hline 0 & 0 & 0 & 0 & \Xi_{R''R'}^{(1)} & \Omega_{R''}^{(1)} \\ \hline 0 & 0 & 0 & 0 & \Xi_{R''R'}^{(2)} & \Omega_{R''}^{(1)} \\ \hline 0 & 0 & 0 & 0 & \Xi_{R''R'}^{(2)} & \Omega_{R''}^{(1)} \\ \hline 0 & 0 & 0 & 0 & \Xi_{R''R'}^{(2)} & \Omega_{R''}^{(2)} \\ \hline 0 & 0 & 0 & 0 & \Xi_{R''R'}^{(2)} & \Omega_{R''}^{(2)} \\ \hline 0 & 0 & 0 & 0 & \Xi_{R''R'}^{(2)} & \Omega_{R''}^{(2)} \\ \hline 0 & 0 & 0 & 0 & \Xi_{R''R'}^{(2)} & \Omega_{R''}^{(2)} \\ \hline 0 & 0 & 0 & 0 & \Xi_{R''R'}^{(2)} \\ \hline 0 & 0 & 0 & \Omega_{L}^{(3)} & 0 & 0 \\ \hline 0 & 0 & \Omega_{L}^{(3)} & 0 & 0 \\ \hline 0 & 0 & \Omega_{R'}^{(3)} & \Xi_{R''R''}^{(3)} \\ \hline 0 & 0 & \Sigma_{R''R'}^{(2)} & \Omega_{R''}^{(3)} \\ \hline 0 & 0 & \Sigma_{R''R'}^{(2)} & \Omega_{R''}^{(3)} \\ \hline 0 & 0 & \Sigma_{R''R'}^{(2)} & \Omega_{R''}^{(3)} \\ \hline 0 & 0 & \Sigma_{R''R'}^{(2)} & \Omega_{R''}^{(3)} \\ \hline 0 & 0 & \Sigma_{R''R'}^{(2)} & \Omega_{R''}^{(3)} \\ \hline 0 & 0 & \Sigma_{R''R'}^{(2)} & \Omega_{R''}^{(3)} \\ \hline 0 & 0 & \Sigma_{R''R'}^{(2)} & \Omega_{R''}^{(3)} \\ \hline 0 & 0 & \Sigma_{R''R'}^{(2)} & \Omega_{R''}^{(3)} \\ \hline 0 & 0 & \Sigma_{R''R'}^{(2)} & \Omega_{R''}^{(3)} \\ \hline 0 & 0 & \Sigma_{R''R'}^{(2)} & \Omega_{R''}^{(3)} \\ \hline 0 & 0 & \Sigma_{R''R'}^{(2)} & \Omega_{R''}^{(3)} \\ \hline 0 & 0 & \Sigma_{R''R'}^{(2)} & \Omega_{R''}^{(3)} \\ \hline 0 & 0 & \Sigma_{R''R'}^{(2)} & \Omega_{R''}^{(3)} \\ \hline 0 & 0 & \Sigma_{R''R'}^{(2)} & \Omega_{R''}^{(3)} \\ \hline 0 & 0 & \Sigma_{R''R'}^{(2)} & \Omega_{R''}^{(3)} \\ \hline 0 & 0 & \Sigma_{R''R'}^{(2)} & \Omega_{R''}^{(3)} \\ \hline 0 & 0 & \Sigma_{R''R'}^{(2)} & \Omega_{R''}^{(3)} \\ \hline 0 & 0 & \Sigma_{R''R'}^{(2)} & \Omega_{R''}^{(3)} \\ \hline 0 & 0 & \Sigma_{R''R'}^{(2)} & \Omega_{R''}^{(3)} \\ \hline 0 & 0 & \Sigma_{R''R''}^{(2)} & \Omega_{R''}^{(3)} \\ \hline 0 & 0 & \Sigma_{R''R''}^{(2)} & \Omega_{R''}^{(3)} \\ \hline 0 & 0 & \Sigma_{R''R''}^{(2)} & \Omega_{R''}^{(3)} \\ \hline 0 & 0 & \Sigma_{R''R''}^{(3)} & \Omega_{R''}^{(3)} \\ \hline 0 & 0 & \Sigma_{R''R''}^{(3)} & \Omega_{R''}^{(3)} \\ \hline 0 & 0 & \Sigma_{R''R''}^{(3)} & \Omega_{R''}^{(3)} \\ \hline 0 & 0 & \Sigma_{R''R''}^{(3)} & \Omega_{R''}^{(3)} \\ \hline 0 & 0 & \Sigma_{R''R''}^{(3)} \\ \hline 0 & 0 & \Sigma_{R''R''}^{(3$$

T. Kobayashi, H. Ohki, A. Oikawa, K. Sumita & H.A. '13

T. Kobayashi, H. Ohki, A. Oikawa, K. Sumita & H.A. '13

T. Kobayashi, H. Ohki, A. Oikawa, K. Sumita & H.A. '12

 T^6/Z_2 orbifold

M	0	1	2	3	4	5	6	7	8	9	10
even	1	1	2	2	3	3	4	4	5	5	6
odd	0	0	0	1	1	2	2	3	3	4	4

$$V(x, y_m, -y_n) = +PV(x, y_m, +y_n)P^{-1},$$

$$\phi_1(x, y_m, -y_n) = +P\phi_1(x, y_m, +y_n)P^{-1},$$

$$\phi_2(x, y_m, -y_n) = -P\phi_2(x, y_m, +y_n)P^{-1},$$

$$\phi_3(x, y_m, -y_n) = -P\phi_3(x, y_m, +y_n)P^{-1},$$

 $\forall m = 4, 5 \text{ and } \forall n = 6, 7, 8, 9$

does not break SUSY preserved by the flux

$$P_{ab} = \begin{pmatrix} -\mathbf{1}_4 & 0 & 0 \\ 0 & +\mathbf{1}_2 & 0 \\ 0 & 0 & +\mathbf{1}_2 \end{pmatrix}$$

projects out many exotic modes without affecting MSSM contents

T. Kobayashi, H. Ohki, A. Oikawa, K. Sumita & H.A. '13

Zero-modes in ϕ_i on orbifold T^6/Z_2

T. Kobayashi, H. Ohki, A. Oikawa, K. Sumita & H.A. '13

Zero-modes in ϕ_i on orbifold T^6/Z_2

We assume the remaining exotics (as well as extra U(1) gauge bosons) become massive due to some other effects

Phenomenological aspects

T. Kobayashi, H. Ohki, A. Oikawa, K. Sumita & H.A. '13

$v_u = v \sin \beta, v_d = v \cos \beta$ and v = 174 GeV**Higgs VEVs** $\tan\beta = 25$ $\langle H_{u}^{K} \rangle = (0.0, 0.0, 2.7, 1.3, 0.0, 0.0) v_{u} \times \mathcal{N}_{H_{u}},$ $\langle H_d^K \rangle = (0.0, 0.1, 5.8, 5.8, 0.0, 0.1) v_d \times \mathcal{N}_{H_d},$ $\mathcal{N}_{H_u} = 1/\sqrt{2.7^2 + 1.3^2}$ Moduli VEVs and Wilson-lines $\mathcal{N}_{H_d} = 1/\sqrt{2(0.1^2 + 5.8^2)}$ $\pi s = 6.0, \rightarrow 4\pi/g_a^2 = 24$ at $M_{\rm GUT} = 2.0 \times 10^{16} \, {\rm GeV}$ $(t_1, t_2, t_3) = (3.0, 1.0, 1.0) \times 2.8 \times 10^{-8},$ $(\tau_1, \tau_2, \tau_3) = (4.1i, 1.0i, 1.0i),$ $(\zeta_Q, \zeta_U, \zeta_D, \zeta_L, \zeta_N, \zeta_E) = (0.6i + \eta, 0.1i + \eta, 0 + \eta, 1.5i + \eta, 1.4i + \eta)$

Phenomenological aspects

T. Kobayashi, H. Ohki, A. Oikawa, K. Sumita & H.A. '13

Semi-realistic quark masses/mixings are obtained

	Sample values	Observed				
(m_u, m_c, m_t)	$(3.1 \times 10^{-3}, 1.01, 1.70 \times 10^2)$	$(2.3 \times 10^{-3}, 1.28, 1.74 \times 10^2)$				
(m_d, m_s, m_b)	$(2.8 \times 10^{-3}, 1.48 \times 10^{-1}, 6.46)$	$(4.8 \times 10^{-3}, 0.95 \times 10^{-1}, 4.18)$				
$(m_e, m_\mu, m_ au)$	$(4.68 \times 10^{-4}, 5.76 \times 10^{-2}, 3.31)$	$(5.11 \times 10^{-4}, 1.06 \times 10^{-1}, 1.78)$				
$ V_{\rm CKM} $	$\left(\begin{array}{cccc} 0.98 & 0.21 & 0.0023 \\ 0.21 & 0.98 & 0.041 \\ 0.011 & 0.040 & 1.0 \end{array}\right)$	$\left(\begin{array}{cccc} 0.97 & 0.23 & 0.0035 \\ 0.23 & 0.97 & 0.041 \\ 0.0087 & 0.040 & 1.0 \end{array}\right)$				

Lepton masses/mixings, moduli-mediated sparticle spectra, ... are also studied assuming a SUSY breaking sector somewhere

Phenomenological aspects

10D U(N) SYM on magnetized tori simply explain important phenomenological features at low energies

- Product gauge groups
- Chiral generations
- Observed masses/mixings

It is interesting to study more...

Here we consider a dynamical SUSY breaking (DSB) in this framework

Contents

- I. Introduction
 - SYM on magnetized tori
 - Phenomenological models
- II. Aspects of DSB on magnetized tori
 - DSB on a local minimum (ISS model)
 - Embedding DSB sector
 - Numerical results
- III. Summary

DSB on local a minimum

K. A. Intriligator, N. Seiberg & D. Shih '06

4D $SU(N_h)$ SYM with N_f massive 'quarks' (q, \tilde{q}) $W = mq\tilde{q}$

DSB on local a minimum

K. A. Intriligator, N. Seiberg & D. Shih '06

4D $SU(N_h)$ SYM with N_f massive 'quarks' (q, \tilde{q}) $W = mq\tilde{q}$ Dual $SU(N_f - N_h)$ SYM for $N_h < N_f < 3N_h/2$ $W_{\rm eff} \sim \varphi \Phi \tilde{\varphi} - \mu^2 \Phi \qquad \mu^2 \sim \sqrt{m} \Lambda_h$ $\Phi: N_f \times N_f$ matrix $\varphi: N_h \times N_f$ matrix $\tilde{\varphi}: N_f \times N_h$ matrix

DSB on local a minimum

K. A. Intriligator, N. Seiberg & D. Shih '06

4D $SU(N_h)$ SYM with N_f massive 'quarks' (q, \tilde{q}) $W = mq\tilde{q}$ Dual $SU(N_f - N_h)$ SYM for $N_h < N_f < 3N_h/2$ $W_{\rm eff} \sim \varphi \Phi \tilde{\varphi} - \mu^2 \Phi \qquad \mu^2 \sim \sqrt{m} \Lambda_h$ $F^{\Phi} \sim \tilde{\varphi} \varphi - \mu^2 \mathbf{1} \neq \mathbf{0}$ **↑ ↑** Rank: $N_f - Nh$ N_f

Contents

- I. Introduction
 - SYM on magnetized tori
 - Phenomenological models
- II. Aspects of DSB on magnetized tori
 - DSB on a local minimum (ISS model)
 - Embedding DSB sector
 - Numerical results
- III. Summary

K. Sumita, T. Watanabe & H.A. in progress

K. Sumita, T. Watanabe & H.A. in progress

The Abelian flux $\rightarrow U(4)_{c} \times U(2)_{L} \times U(2)_{R} \times U(N_{1}) \times U(N_{2})$ r = 1,2,3 $F_{2+2r,3+2r} = 2\pi \begin{pmatrix} M_{c}^{(r)} \mathbf{1}_{4} & & \\ & M_{L}^{(r)} \mathbf{1}_{2} & \\ & & M_{R}^{(r)} \mathbf{1}_{2} & \\ & & & M_{1}^{(r)} \mathbf{1}_{N_{1}} & \\ & & & & M_{2}^{(r)} \mathbf{1}_{N_{2}} \end{pmatrix}$

Fluxes yielding the visible (MSSM) sector

$$\begin{pmatrix} M_{C}^{(1)}, M_{L}^{(1)}, M_{R}^{(1)} \end{pmatrix} = (0, +3, -3) \begin{pmatrix} M_{C}^{(1)}, M_{L}^{(1)}, M_{R}^{(1)} \end{pmatrix} = (0, -1, 0)$$

$$\begin{pmatrix} M_{C}^{(1)}, M_{L}^{(1)}, M_{R}^{(1)} \end{pmatrix} = (0, 0, +1)$$
 Three generations of quarks and leptons

K. Sumita, T. Watanabe & H.A. in progress

The Abelian flux $\rightarrow U(4)_C \times U(2)_L \times U(2)_R \times U(N_1) \times U(N_2)$

$$F_{2+2r,3+2r} = 2\pi \begin{pmatrix} M_C^{(r)} \mathbf{1}_4 \\ M_L^{(r)} \mathbf{1}_2 \\ M_R^{(r)} \mathbf{1}_2 \\ M_R^{(r)} \mathbf{1}_2 \end{pmatrix} \begin{pmatrix} M_1^{(r)} \mathbf{1}_{N_1} \\ M_2^{(r)} \mathbf{1}_{N_2} \end{pmatrix}$$

Fluxes yielding the hidden (DSB) sector?

r =

$$\begin{pmatrix} M_{C}^{(1)}, M_{L}^{(1)}, M_{R}^{(1)}, M_{1}^{(1)}, M_{2}^{(1)} \end{pmatrix} = (0, +3, -3, ?, ?) \begin{pmatrix} M_{C}^{(2)}, M_{L}^{(2)}, M_{R}^{(2)}, M_{1}^{(2)}, M_{2}^{(2)} \end{pmatrix} = (0, -1, 0, ?, ?) \begin{pmatrix} M_{C}^{(3)}, M_{L}^{(3)}, M_{R}^{(3)}, M_{1}^{(3)}, M_{2}^{(3)} \end{pmatrix} = (0, 0, +1, ?, ?)$$
 \longrightarrow $SU(N_{h})$ SYM
with N_{f} 'quarks' (q, q)

K. Sumita, T. Watanabe & H.A. in progress

Matter contents

 $U(4)_C \times U(2)_L \times U(2)_R \times U(N_1) \times U(N_2)$

i = 1, 2, 3

K. Sumita, T. Watanabe & H.A. in progress

Matter contents $U(4)_C \times U(2)_L \times U(2)_R \times U(N_1) \times U(N_2)$ i = 1, 2, 3 $SU(N_f) \times SU(N_h)$ $q, \tilde{q} : SU(N_h)$ quarks

K. Sumita, T. Watanabe & H.A. in progress

Matter contents $U(4)_C \times U(2)_L \times U(2)_R \times U(N_1) \times U(N_2)$ i = 1, 2, 3 $SU(N_f) \times SU(N_h)$ $\phi_{i} = \begin{pmatrix} \text{visible} & \psi_{1} & \chi_{2} \\ \\ \hline \\ \chi_{2} & \tilde{q} & \Omega_{2} \end{pmatrix}$ $q, \tilde{q} : SU(N_h)$ quarks

K. Sumita, T. Watanabe & H.A. in progress

Matter contents $U(4)_C \times U(2)_L \times U(2)_R \times U(N_1) \times U(N_2)$ i = 1, 2, 3 $SU(N_f) \times SU(N_h)$ $\phi_{i} = \begin{pmatrix} \text{visible} & \psi & - \\ \\ \hline \psi & & \Omega_{1} & q \\ \hline - & & \tilde{q} & \Omega_{2} \end{pmatrix}$ $q, \tilde{q}: SU(N_h)$ quarks

ISS-type SUSY breaking

K. Sumita, T. Watanabe & H.A. in progress

Assume $\Omega_{1,2} = \zeta_{1,2} + \widetilde{\Omega}_{1,2}$ with heavy masses $M_{1,2}$ and integrate them out

$$\begin{split} W &\sim (\zeta_1 - \zeta_2) \, \tilde{q} \, q + (\zeta_1 - \zeta_{\text{vis}}) \, \tilde{\psi} \psi \\ &+ \left(\frac{1}{M_1} - \frac{1}{M_2}\right) q \tilde{q} \tilde{q} q + \frac{1}{M_1} q \tilde{q} \tilde{\psi} \psi + \cdots \end{split}$$

H. Murayama & Y. Nomura '07

ISS-type SUSY breaking

K. Sumita, T. Watanabe & H.A. in progress

If $SU(N_1)$ is weak below the dynamical scale $\Lambda_2 \equiv \Lambda_h$ of $SU(N_2)$

$$\begin{split} W_{\rm eff} \sim \varphi \Phi \tilde{\varphi} - \mu^2 \Phi + M \Phi^2 + W_{\rm mess} \\ \mu^2 \sim (\zeta_1 - \zeta_2) \Lambda_h, \qquad M \sim \left(\frac{1}{M_1} - \frac{1}{M_2}\right) \Lambda_h^2 \end{split}$$

H. Murayama & Y. Nomura '07
ISS-type SUSY breaking

K. Sumita, T. Watanabe & H.A. in progress

If $SU(N_1)$ is weak below the dynamical scale $\Lambda_2 \equiv \Lambda_h$ of $SU(N_2)$

$$W_{\text{eff}} \sim \varphi \Phi \tilde{\varphi} - \mu^2 \Phi + M \Phi^2 + W_{\text{mess}}$$
$$\mu^2 \sim (\zeta_1 - \zeta_2) \Lambda_h, \qquad M \sim \left(\frac{1}{M_1} - \frac{1}{M_2}\right) \Lambda_h^2$$

On the (metastable) minimum $F^{\Phi} \sim \mu^2$, $\langle \Phi \rangle \sim 16\pi^2 M$

H. Murayama & Y. Nomura '07

ISS-type SUSY breaking

K. Sumita, T. Watanabe & H.A. in progress

If $SU(N_1)$ is weak below the dynamical scale $\Lambda_2 \equiv \Lambda_h$ of $SU(N_2)$

$$\begin{split} W_{\rm eff} \sim \varphi \Phi \tilde{\varphi} - \mu^2 \Phi + M \Phi^2 + W_{\rm mess} \\ \mu^2 \sim (\zeta_1 - \zeta_2) \Lambda_h, \qquad M \sim \left(\frac{1}{M_1} - \frac{1}{M_2}\right) \Lambda_h^2 \\ \text{On the (metastable) minimum } F^{\Phi} \sim \mu^2, \ \langle \Phi \rangle \sim 16\pi^2 M \\ M_{\rm SB} \sim \sqrt{F^{\Phi}} : \text{SUSY breaking scale} \\ M_{\psi} \sim \zeta_1 - \zeta_{\rm vis} + \frac{\Lambda_h}{M_1} \langle \Phi \rangle : \text{Messenger mass scale} \end{split}$$

H. Murayama & Y. Nomura '07

ISS-type SUSY breaking

K. Sumita, T. Watanabe & H.A. in progress

Matter contents $U(4)_C \times U(2)_L \times U(2)_R \times U(N_1) \times U(N_2)$ i = 1, 2, 3 $SU(N_f) \times SU(N_h)$ $\phi_i = \begin{pmatrix} \text{visible} & \psi & - \\ & & \\ \hline \psi & \zeta_1 & q \\ & - & \hline q & \zeta_2 \end{pmatrix}$ $q, \tilde{q} : SU(N_h)$ quarks $\psi, \bar{\psi}$: Messengers

Flux configurations on T^6

K. Sumita, T. Watanabe & H.A. in progress

SUSY fluxes yielding no chiral modes in DSB/messenger sectors

Model	$(M_1^{(1)}, M_2^{(1)})$	$(M_1^{(2)}, M_2^{(2)})$	$(M_1^{(3)}, M_2^{(3)})$
1	(0,0)	(0,0)	(0,0)
2	(3,3)	(0,0)	(-1, -1)
3	(-3, -3)	(1,1)	(0,0)
4	(0,3)	(0,0)	(0, -1)
5	(3,0)	(0,0)	(-1,0)
6	(0, -3)	(0,1)	(0,0)
7	(-3,0)	(1,0)	(0,0)

K. Sumita, T. Watanabe & H.A. in progress

$(M_1^{(1)}, M_2^{(1)})$	(0,0)
$(M_1^{(2)}, M_2^{(2)})$	(0,0)
$(M_1^{(3)}, M_2^{(3)})$	(0,0)

Φ_1	$U(4)_C$	$U(2)_L$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$				1	1
$U(2)_{L}$		T^6		3	3
$U(2)_R$				0	0
$U(N_1)$	1	0	3	1	1
$U(N_2)$	1	0	3	1	1

Φ ₂	$U(4)_C$	$U(2)_L$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$				1	1
$U(2)_{L}$		T^6		0	0
$U(2)_R$				0	0
$U(N_1)$	1	3	0	1	1
$U(N_2)$	1	3	0	1	1

Φ_3	$U(4)_C$	$U(2)_{L}$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$				1	1
$U(2)_{L}$		T^6		0	0
$U(2)_R$				3	3
$U(N_1)$	1	0	0	1	1
$U(N_2)$	1	0	0	1	1

K. Sumita, T. Watanabe & H.A. in progress

$(M_1^{(1)}, M_2^{(1)})$	(3,3)
$(M_1^{(2)}, M_2^{(2)})$	(0,0)
$(M_1^{(3)}, M_2^{(3)})$	(-1, -1)

Φ_1	$U(4)_C$	$U(2)_L$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$				0	0
$U(2)_{L}$		T^6		0	0
$U(2)_R$				0	0
$U(N_1)$	3	0	6	1	1
$U(N_2)$	3	0	6	1	1

Φ ₂	$U(4)_C$	$U(2)_L$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$				0	0
$U(2)_{L}$		T^6		0	0
$U(2)_R$				0	0
$U(N_1)$	0	1	0	1	1
$U(N_2)$	0	1	0	1	1

Φ_3	$U(4)_C$	$U(2)_{L}$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$				3	3
$U(2)_L$		T^6		1	1
$U(2)_R$				6	6
$U(N_1)$	0	0	0	1	1
$U(N_2)$	0	0	0	1	1

K. Sumita, T. Watanabe & H.A. in progress

$(M_1^{(1)}, M_2^{(1)})$	(-3, -3)
$(M_1^{(2)}, M_2^{(2)})$	(0,0)
$(M_1^{(3)}, M_2^{(3)})$	(1,1)

Φ_1	$U(4)_C$	$U(2)_L$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$				3	3
$U(2)_{L}$		T^6		6	6
$U(2)_R$				0	0
$U(N_1)$	0	0	0	1	1
$U(N_2)$	0	0	0	1	1

Φ ₂	$U(4)_C$	$U(2)_{L}$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$				0	0
$U(2)_{L}$		T^6		0	0
$U(2)_R$				0	0
$U(N_1)$	3	6	1	1	1
$U(N_2)$	3	6	1	1	1

Φ ₃	$U(4)_C$	$U(2)_{L}$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$				0	0
$U(2)_{L}$		T^6		0	0
$U(2)_R$				1	1
$U(N_1)$	0	0	0	1	1
$U(N_2)$	0	0	0	1	1

K. Sumita, T. Watanabe & H.A. in progress

$(M_1^{(1)}, M_2^{(1)})$	(0,3)
$(M_1^{(2)}, M_2^{(2)})$	(0,0)
$(M_1^{(3)}, M_2^{(3)})$	(0, -1)

Φ_1	$U(4)_C$	$U(2)_{L}$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$				1	0
$U(2)_{L}$		T^6		3	0
$U(2)_R$				0	0
$U(N_1)$	1	0	3	1	0
$U(N_2)$	3	0	12	3	1

Φ ₂	$U(4)_C$	$U(2)_{L}$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$				1	0
$U(2)_{L}$		T^6		0	0
$U(2)_R$				0	0
$U(N_1)$	1	3	0	1	0
$U(N_2)$	0	1	0	0	1

Φ_3	$U(4)_C$	$U(2)_L$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$				1	3
$U(2)_L$		T^6		0	1
$U(2)_R$				3	12
$U(N_1)$	1	0	0	1	3
$U(N_2)$	0	0	0	0	1

K. Sumita, T. Watanabe & H.A. in progress

$(M_1^{(1)}, M_2^{(1)})$	(3,0)
$(M_1^{(2)}, M_2^{(2)})$	(0,0)
$(M_1^{(3)}, M_2^{(3)})$	(-1,0)

Φ_1	$U(4)_C$	$U(2)_L$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$				0	1
$U(2)_{L}$		T^6		0	3
$U(2)_R$				0	0
$U(N_1)$	3	0	12	1	0
$U(N_2)$	1	0	3	3	1

Φ ₂	$U(4)_C$	$U(2)_L$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$				0	1
$U(2)_{L}$		T^6		0	0
$U(2)_R$				0	0
$U(N_1)$	0	1	0	1	0
$U(N_2)$	1	3	0	0	1

Φ_3	$U(4)_C$	$U(2)_L$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$				3	1
$U(2)_L$		T^6		1	0
$U(2)_R$				12	3
$U(N_1)$	0	0	0	1	3
$U(N_2)$	1	0	0	0	1

K. Sumita, T. Watanabe & H.A. in progress

$(M_1^{(1)}, M_2^{(1)})$	(0, -3)
$(M_1^{(2)}, M_2^{(2)})$	(0,1)
$(M_1^{(3)}, M_2^{(3)})$	(0,0)

Φ_1	$U(4)_C$	$U(2)_L$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$				1	3
$U(2)_{L}$		T^6		1	12
$U(2)_R$				0	0
$U(N_1)$	6	0	3	1	3
$U(N_2)$	0	0	0	0	1

Φ ₂	$U(4)_C$	$U(2)_L$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$			-	1	0
$U(2)_{L}$		T^6		0	0
$U(2)_R$	• •			0	0
$U(N_1)$	1	3	0	1	0
$U(N_2)$	3	12	1	3	1

Φ_3	$U(4)_C$	$U(2)_L$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$				1	0
$U(2)_L$		T^6	0	0	
$U(2)_R$			3	1	
$U(N_1)$	1	0	0	1	0
$U(N_2)$	0	0	0	0	1

K. Sumita, T. Watanabe & H.A. in progress

$(M_1^{(1)}, M_2^{(1)})$	(-3,0)
$(M_1^{(2)}, M_2^{(2)})$	(1,0)
$(M_1^{(3)}, M_2^{(3)})$	(0,0)

Φ_1	$U(4)_C$	$U(2)_{L}$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$			3	1	
$U(2)_{L}$		T^6	12	3	
$U(2)_R$			0	0	
$U(N_1)$	0	0	0	1	0
$U(N_2)$	1	0	3	3	1

Φ ₂	$U(4)_C$	$U(2)_L$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$			0	1	
$U(2)_{L}$		T^6	0	0	
$U(2)_R$			0	0	
$U(N_1)$	3	12	1	1	3
$U(N_2)$	1	3	0	0	1

Φ_3	$U(4)_C$	$U(2)_L$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$			0	1	
$U(2)_L$		T^6	0	0	
$U(2)_R$			1	3	
$U(N_1)$	0	0	0	1	0
$U(N_2)$	1	0	0	0	1

Flux configurations on T^6/Z_2

K. Sumita, T. Watanabe & H.A. in progress

SUSY fluxes parameterized by (x, s, t)

$(M_1^{(1)}, M_2^{(1)})$	(3x, 3x)
$(M_1^{(2)}, M_2^{(2)})$	(<i>s</i> , <i>t</i>)
$(M_1^{(3)}, M_2^{(3)})$	(-x-s,-x-t)

Chiral modes in DSB/messenger sectors are inevitable

Flux configurations on T^6/Z_2

K. Sumita, T. Watanabe & H.A. in progress

SUSY fluxes parameterized by (x, s, t)

$(M_1^{(1)}, M_2^{(1)})$	(3x, 3x)
$(M_1^{(2)}, M_2^{(2)})$	(<i>s</i> , <i>t</i>)
$(M_1^{(3)}, M_2^{(3)})$	(-x-s,-x-t)

Chiral modes in DSB/messenger sectors are inevitable

Model	(x, s, t)	$P^{\pm\mp}$
1	(0,1,0)	P^{-+}
2	(0, -1,0)	P^{-+}
3	(0,1,-1)	P^{-+}
4	(1,0,0)	P ⁺⁻
5	(-1,0,0)	P^{-+}
6	(1, -1, -1)	<i>P</i> ⁺⁻
7	(1, -1, 1)	P^{+-}

Vector-like messengers appear in $SU(N_1)$ sector

Flux configurations on T^6/Z_2

K. Sumita, T. Watanabe & H.A. in progress

SUSY fluxes parameterized by (x, s, t)

$(M_1^{(1)}, M_2^{(1)})$	(3x, 3x)	17
$(M_1^{(2)}, M_2^{(2)})$	(<i>s</i> , <i>t</i>)	V
$(M_1^{(3)}, M_2^{(3)})$	(-x-s,-x-t)	ϕ_1

Model	(x, s, t)	$P^{\pm\mp}$
1	(0,1,0)	P^{-+}
2	(0, -1,0)	P^{-+}
3	(0,1,-1)	P^{-+}
4	(1,0,0)	<i>P</i> ⁺⁻
5	(-1,0,0)	P^{-+}
6	(1, -1, -1)	<i>P</i> ⁺⁻
7	(1, -1, 1)	P^{+-}

-	V(x,	$y_m, -y_n$) =	+PV	$(x, y_m, -$	$-y_n)P^{-1}$,
-	$\phi_1(x,$	$y_m, -y_n$) =	$+P\phi_1$	$(x, y_m, \cdot$	$+y_n)P^-$	1,
	$\phi_2(x,$	$y_m, -y_n$) =	$-P\phi_2$	(x, y_m, \cdot)	$+y_n)P^-$	1,
	$\phi_3(x,$	$y_m, -y_n$) =	$-P\phi_3$	$(x, y_m, \cdot$	$+y_n)P^-$	1,
			[∀] m =	= 4,5 a	and $\forall n$ =	= 6, 7, 8,	9
		(-1_4)	0	0	0	0	
		0	$+1_{2}$	0	0	0	
F	$p_{ab}^{\pm\mp} =$	0	0	$+1_{2}$	0	0	
	uo	0	0	0	$\pm 1_{N_1}$	0	
		0	0	0	0	$\mp 1_{N_2}$	Ι

K. Sumita, T. Watanabe & H.A. in progress

$(M_1^{(1)}, M_2^{(1)})$	(3x, 3x)
$(M_1^{(2)}, M_2^{(2)})$	(<i>s</i> , <i>t</i>)
$(M_1^{(3)}, M_2^{(3)})$	(-x-s,-x-t)
$(x,s,t), P^{\pm\mp}$	(0,1,0), P ⁻⁺

Φ_1	$U(4)_C$	$U(2)_L$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$				0	1
$U(2)_{L}$		T^{6}/Z_{2}		0	0
$U(2)_R$				0	0
$U(N_1)$	0 0 0		1	0	
$U(N_2)$	1	0	3	0	1

Φ ₂	$U(4)_C$	$U(2)_L$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$			-	0	0
$U(2)_{L}$		T^{6}/Z_{2}		0	0
$U(2)_R$				0	0
$U(N_1)$	1	0	0	0	1
$U(N_2)$	0	1	0	0	0

Φ_3	$U(4)_C$	$U(2)_{L}$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$				1	0
$U(2)_{L}$		T^{6}/Z_{2}		0	0
$U(2)_R$				6	0
$U(N_1)$	0	0	0	0	0
$U(N_2)$	0	0	0	1	0

K. Sumita, T. Watanabe & H.A. in progress

$(M_1^{(1)}, M_2^{(1)})$	(3x, 3x)
$(M_1^{(2)}, M_2^{(2)})$	(<i>s</i> , <i>t</i>)
$(M_1^{(3)}, M_2^{(3)})$	(-x-s,-x-t)
$(x,s,t), P^{\pm\mp}$	(0, -1,0), <i>P</i> ⁻⁺

Φ_1	$U(4)_C$	$U(2)_{L}$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$				0	1
$U(2)_{L}$		T^{6}/Z_{2}		3	0
$U(2)_R$				0	0
$U(N_1)$	0 0 0		1	0	
$U(N_2)$	1	0	3	0	1

Φ ₂	$U(4)_C$	$U(2)_L$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$				1	0
$U(2)_{L}$		T^{6}/Z_{2}		0	0
$U(2)_R$				3	0
$U(N_1)$	0 0 0		0	0	
$U(N_2)$	0	3	0	1	0

Φ_3	$U(4)_C$	$U(2)_{L}$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$				0	0
$U(2)_{L}$		T^{6}/Z_{2}		0	0
$U(2)_R$				0	0
$U(N_1)$	1	0	0	0	1
$U(N_2)$	0	0	0	0	0

K. Sumita, T. Watanabe & H.A. in progress

$(M_1^{(1)}, M_2^{(1)})$	(3x, 3x)
$(M_1^{(2)}, M_2^{(2)})$	(<i>s</i> , <i>t</i>)
$(M_1^{(3)}, M_2^{(3)})$	(-x-s,-x-t)
$(x,s,t), P^{\pm\mp}$	$(0,1,-1), P^{-+}$

Φ_1	$U(4)_C$	$U(2)_L$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$				0	0
$U(2)_{L}$		T^{6}/Z_{2}		0	0
$U(2)_R$				0	0
$U(N_1)$	0 0 0		1	0	
$U(N_2)$	0	0	3	0	1

Φ ₂	$U(4)_C$	$U(2)_L$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$				0	0
$U(2)_{L}$		T^{6}/Z_{2}		0	0
$U(2)_R$				0	0
$U(N_1)$	1	0	0	0	4
$U(N_2)$	0	0	0	0	0

Φ_3	$U(4)_C$	$U(2)_{L}$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$				1	0
$U(2)_{L}$		T^{6}/Z_{2}		0	0
$U(2)_R$				6	0
$U(N_1)$	0	0	0	0	0
$U(N_2)$	0	3	0	4	0

K. Sumita, T. Watanabe & H.A. in progress

$(M_1^{(1)}, M_2^{(1)})$	(3x, 3x)
$(M_1^{(2)}, M_2^{(2)})$	(<i>s</i> , <i>t</i>)
$(M_1^{(3)}, M_2^{(3)})$	(-x-s,-x-t)
$(x,s,t), P^{\pm\mp}$	(1,0,0), P ⁺⁻

Φ_1	$U(4)_C$	$U(2)_L$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$				0	0
$U(2)_{L}$		T^{6}/Z_{2}		0	0
$U(2)_R$				0	0
$U(N_1)$	3	0	12	1	0
$U(N_2)$	0	0	0	0	1

Φ ₂	$U(4)_C$	$U(2)_L$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$				0	0
$U(2)_{L}$		T^{6}/Z_{2}		0	0
$U(2)_R$				0	0
$U(N_1)$	0	1	0	0	1
$U(N_2)$	0	0	0	1	0

Φ_3	$U(4)_C$	$U(2)_{L}$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$				0	3
$U(2)_{L}$		T^{6}/Z_{2}		1	0
$U(2)_R$				0	12
$U(N_1)$	0	0	0	0	1
$U(N_2)$	0	0	0	1	0

K. Sumita, T. Watanabe & H.A. in progress

$(M_1^{(1)}, M_2^{(1)})$	(3x, 3x)
$(M_1^{(2)}, M_2^{(2)})$	(<i>s</i> , <i>t</i>)
$(M_1^{(3)}, M_2^{(3)})$	(-x-s,-x-t)
$(x,s,t), P^{\pm\mp}$	$(-1,0,0), P^{-+}$

Φ_1	$U(4)_C$	$U(2)_{L}$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$				0	3
$U(2)_{L}$		T^{6}/Z_{2}		6	0
$U(2)_R$				0	1
$U(N_1)$	0	0	0	1	0
$U(N_2)$	0	0	1	0	1

Φ ₂	$U(4)_C$	$U(2)_L$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$				0	0
$U(2)_{L}$		T^{6}/Z_{2}		0	0
$U(2)_R$				1	0
$U(N_1)$	0	0	1	0	1
$U(N_2)$	0	0	0	1	0

Φ_3	$U(4)_C$	$U(2)_{L}$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$				0	0
$U(2)_{L}$		T^{6}/Z_{2}		0	0
$U(2)_R$				1	0
$U(N_1)$	3	0	1	0	1
$U(N_2)$	0	0	0	1	0

K. Sumita, T. Watanabe & H.A. in progress

$(M_1^{(1)}, M_2^{(1)})$	(3x, 3x)
$(M_1^{(2)}, M_2^{(2)})$	(<i>s</i> , <i>t</i>)
$(M_1^{(3)}, M_2^{(3)})$	(-x-s,-x-t)
$(x,s,t), P^{\pm\mp}$	$(1, -1, -1), P^{+-}$

Φ_1	$U(4)_C$	$U(2)_L$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$				0	0
$U(2)_{L}$		T^{6}/Z_{2}		0	1
$U(2)_R$				0	0
$U(N_1)$	3	0	0	1	0
$U(N_2)$	0	1	6	0	1

Φ ₂	$U(4)_C$	$U(2)_L$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$				0	3
$U(2)_{L}$		T^{6}/Z_{2}		1	0
$U(2)_R$				0	0
$U(N_1)$	0	1	0	0	1
$U(N_2)$	0	0	0	1	0

Φ_3	$U(4)_C$	$U(2)_{L}$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$				0	0
$U(2)_{L}$		T^{6}/Z_{2}		1	0
$U(2)_R$				0	0
$U(N_1)$	0	1	0	0	1
$U(N_2)$	0	0	0	1	0

K. Sumita, T. Watanabe & H.A. in progress

$(M_1^{(1)}, M_2^{(1)})$	(3x, 3x)
$(M_1^{(2)}, M_2^{(2)})$	(<i>s</i> , <i>t</i>)
$(M_1^{(3)}, M_2^{(3)})$	(-x-s,-x-t)
$(x,s,t), P^{\pm\mp}$	$(1, -1, 1), P^{+-}$

Φ_1	$U(4)_C$	$U(2)_L$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$	T^{6}/Z_{2}			0	0
$U(2)_{L}$				0	0
$U(2)_R$				0	0
$U(N_1)$	3	0	6	1	0
$U(N_2)$	0	0	0	1	1

Φ ₂	$U(4)_C$	$U(2)_{L}$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$	T^{6}/Z_{2}			0	0
$U(2)_{L}$				1	0
$U(2)_R$				0	0
$U(N_1)$	0	1	0	0	1
$U(N_2)$	0	0	0	0	0

Φ_3	$U(4)_C$	$U(2)_{L}$	$U(2)_R$	$U(N_1)$	$U(N_2)$
$U(4)_C$	T^{6}/Z_{2}			0	6
$U(2)_{L}$				1	0
$U(2)_R$				0	12
$U(N_1)$	0	1	0	0	0
$U(N_2)$	0	0	0	0	0

K. Sumita, T. Watanabe & H.A. in progress

SUSY breaking scale and messenger scale

$$M_{\rm SB} \sim \sqrt{(\zeta_1 - \zeta_2)\Lambda_h}$$
$$M_{\psi} \sim \zeta_1 - \zeta_{\rm vis} + 16\pi^2 \frac{\Lambda_h^3}{M_{1,2}^2}$$

determined by parameters $\zeta_{1,2}$, ζ_{vis} , Λ_h , $M_{1,2}$

Threshold corrections to gauge couplings? $SU(3)_C \times SU(2)_L \times U(1)_Y \times SU(N_f) \times SU(N_h)$

K. Sumita, T. Watanabe & H.A. in progress

Parameters $\zeta_{1,2}$, $\zeta_{\rm vis}$, Λ_h , $M_{1,2}$

E

K. Sumita, T. Watanabe & H.A. in progress

Parameters $\zeta_{1,2}$, $\zeta_{\rm vis}$, Λ_h , $M_{1,2}$

K. Sumita, T. Watanabe & H.A. in progress

K. Sumita, T. Watanabe & H.A. in progress

K. Sumita, T. Watanabe & H.A. in progress

Contents

- I. Introduction
 - SYM on magnetized tori
 - Phenomenological models
- II. Aspects of DSB on magnetized tori
 - DSB on a local minimum (ISS model)
 - Embedding DSB sector
 - Numerical results
- III. Summary

K. Sumita, T. Watanabe & H.A. in progress

Model 6 on T^6/Z_2

 $M_{\rm SB}$ v.s. $M_{\psi} \sim \zeta_1 - \zeta_{\rm vis}$ with $\vartheta = \zeta_{1,2}/\zeta_{\rm vis}$ fixed

Dashed contours: $\log_{10}\Lambda_h$

K. Sumita, T. Watanabe & H.A. in progress

Model 6 on T^6/Z_2

 $M_{\rm SB}$ v.s. $M_{\psi} \sim \zeta_1 - \zeta_{\rm vis}$ with $\vartheta = \zeta_{1,2}/\zeta_{\rm vis}$ fixed

Dashed contours: $\log_{10}\Lambda_h$

K. Sumita, T. Watanabe & H.A. in progress

Model 6 on T^6/Z_2

 $M_{\rm SB}$ v.s. $M_{\psi} \sim \zeta_1 - \zeta_{\rm vis}$ with $\vartheta = \zeta_{1,2}/\zeta_{\rm vis}$ fixed

Dashed contours: $\log_{10}\Lambda_h$

K. Sumita, T. Watanabe & H.A. in progress

Model 6 on T^6/Z_2

 $M_{\rm SB}$ v.s. $M_{\psi} \sim \zeta_1 - \zeta_{\rm vis}$ with $\vartheta = \zeta_{1,2}/\zeta_{\rm vis}$ fixed

Dashed contours: $\log_{10}\Lambda_h$

K. Sumita, T. Watanabe & H.A. in progress

Model 6 on T^6/Z_2

$$M_{\rm SB}$$
 v.s. $M_{\psi} \sim 16\pi^2 \frac{\Lambda_h^3}{M_{1,2}^2}$

Dashed contours: $\log_{10}\zeta_{vis}$

Red contours: $\log_{10} M_{\rm U}$

K. Sumita, T. Watanabe & H.A. in progress

Model 6 on T^6/Z_2

$$M_{\rm SB}$$
 v.s. $M_{\psi} \sim 16\pi^2 \frac{\Lambda_h^3}{M_{1.2}^2}$

Dashed contours: $\log_{10}\zeta_{vis}$

Red contours: $\log_{10} M_{\rm U}$

K. Sumita, T. Watanabe & H.A. in progress

Model 6 on T^6/Z_2

$$M_{\rm SB}$$
 v.s. $M_{\psi} \sim 16\pi^2 \frac{\Lambda_h^3}{M_{1.2}^2}$

Dashed contours: $\log_{10}\zeta_{vis}$

Contents

- I. Introduction
 - SYM on magnetized tori
 - Phenomenological models
- II. Aspects of DSB on magnetized tori
 - DSB on a local minimum (ISS model)
 - Embedding DSB sector
 - Numerical results
- III. Summary
Summary

- Aspects of DSB on magnetized T^6 and T^6/Z_2
 - Extend the gauge group to include the ISS-type hidden sector
 - The DSB sector is accompanied by a messenger sector
 Gauge mediated contributions
 - Certain correlations between SUSY breaking and messenger scales are detected
 - The results provide a guideline for magnetized model buildings

Summary

Issues remaining

- Numerical analysis on T^6
- Some chiral exotics in hidden/messenger sector on T^6/Z_2
- Stabilization of adjoint modes

Further prospects

- Extension to mixed SYM theories
- Moduli stabilization
- Effects of curved geometries
- D-brane interpretations and dual descriptions

Thank you!