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Motivation: Rigid SUSY on curved manifolds

Lots of work about exploiting SUSY on curved manifolds
Wilson loop observables in N = 4 on S4 [Pestun ’07]

Partition functions of N = 2 theories on S3 to test various dualities
[Kapustin, Willet, Yaakov ’10]

Computation of various indices for supersymmetric theories, etc.
[Romelsberger ’07] see also [Jafferis; Hama, Hosomichi, Lee; Imamura, Yokoyama; · · · ]

But how does one put a known supersymmetric field theory
on a curved manifold in the first place?

Until recently, this was done piecemeal, theory-by-theory.

Festuccia and Seiberg gave a systematic scheme: derive rigid SUSY from SUGRA.
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Motivation: Rigid SUSY on curved manifolds

Characterizing rigid manifolds with some SUSY
4D N = 1 theories with one or more supercharges

[Cassani, Dumitrescu, Festuccia, Klare, Martelli, Seiberg, Tomasiello, Zaffaroni, · · · ]

3D papers are also exceedingly numerous...
[Martelli, Passias, Sparks; Closset, Dumitrescu, Festuccia, Komargodski; · · · ]

Not a lot of work on 4D N = 2
N = 2 theories have interesting features and more SUSY to exploit...
Backgrounds with one supercharge... [Gupta, Murthy; Klare, Zaffaroni ’13]
but not the full eight. Perhaps trivial?
It turns out full N = 2 richer than full N = 1!

We will address the following questions:

What are all curved backgrounds consistent with full rigid N = 2 SUSY?
What are all rigid actions for vector multiplets and hypermultiplets?
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Outline
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2 Supercoset spaces

3 Matter actions in rigid SUSY backgrounds
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Lessons from rigid supergravity
Take a pause and recall the lesson of [Festuccia-Seiberg ’11]:

A rigid SUSY matter action can be thought of as a coupled matter-SUGRA action
with SUGRA fixed as background. “Auxiliary fields” of the supergravity multiplet
play an essential role.

Finding a rigid SUSY means solving the SUGRA Killing spinor equation.
δψmα

i = 2Dmξiα(x) + auxiliary fields = 0.
Killing spinor ξiα(x) parametrized by constants εiα.
In Minkowski, ξiα(x) = εiα.
In other backgrounds, ξiα(x) = A(x)εiα

Different off-shell SUGRAs lead to different allowed backgrounds.

We need to address two questions in our case:
1. What is the most general off-shell SUGRA?
2. How do we solve the Killing spinor equation for maximal SUSY?
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General off-shell N = 2 SUGRA

Conformal SUGRA: 24b+24f
em

a ψmα
i Vm

i
j Vm

∣∣∣∣∣∣ W−
ab = T−

ab χαi D

N = 2 analogues of old and new minimal given by short compensators:

Vector multiplet: 8b + 8f
X λi

∣∣∣∣∣∣ Fmn = (dA)mn Yij

R-symmetry: SU(2)

Tensor multiplet: 8b + 8f
Lij λi

∣∣∣∣∣∣ Hmnp = (dB)mnp F

R-symmetry: SO(2)× U(1)

Use instead the longest possible compensator

General scalar multiplet: 128b + 128f
Ω λi

∣∣∣∣∣∣ Sij Y −
ab Ga Ga

i
j · · ·

R-symmetry: SU(2)× U(1)
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General SUGRA to rigid SUSY
General SUGRA Killing spinor equation:

δQψmα
i = 2Dmξαi − iS̄ij(σmξ̄j)α + i(Y +

mn −W−
mn)(σnξ̄i)α

+ 4iGn(σnmξi)α − 2Gnji(σnσ̄mξj)α = 0 .

Helpful to express this in superspace...

General SUGRA algebra (schematic form)

{Dαi,Dβj} = Lorentz and R-symmetry curvatures ,
{Dαi, D̄β̇j} = −2i δijDαβ̇ + Lorentz and R-symmetry curvatures

curvatures involve: Sij , Y −
ab , W+

ab, Ga, Ga
ij

A rigid SUSY must leave the curvatures invariant.
[Kuzenko, Novak, Tartaglino-Mazzucchelli ’12, ’14]

δQSij = ξαkDkαSij = 0 =⇒ DkαSij = 0 =⇒ {Dkα,Dlβ}Sij = 0

Integrability conditions imply that all curvatures are (covariantly) constant.
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From constant curvatures to coset spaces
Riemann tensor is explicitly determined

Rab
cd = SijS̄ijδa

[cδb
d] − 1

2(ZabZ̄cd + Z̄abZcd)

+ 8G2δa
[cδb

d] − 16G[aG
[cδb]

d] + 4GfijG
ij
f δa

[cδb
d] − 8Gij[aG

[c
ijδb]

d]

Although all curvature tensors specified, we really want to know:
What is the (global) structure of these spaces?
How do we know the full set of Killing spinors actually exists?

We can easily resolve all these issues if we realize one important fact:

constant curvature tensors =⇒ (super) coset space

More accurately: for any superspace algebra with constant curvatures,
we can construct a (global) super coset space with the same curvatures.
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(Super) coset spaces

A simple example of a (bosonic) coset space: AdS4 = SO(3, 2)/SO(3, 1)
[Da,Db] = −µ2Mab , [Mab,Dc] = ηc[aDb]

Introduce matrix representations: Da → P̂a and Mab → M̂ab.

Recall basic steps for dealing with a coset G/H with g = {P̂a, M̂ab} and h = {M̂ab}
1. Introduce coset element: L = exp(xaP̂a).

2. Construct Cartan-Maurer form L−1dL = dxmem
a(x)P̂a + 1

2dxmωm
abM̂ab

Covariant derivatives Da automatically inherit algebraic structure.
3. The isometries of G on the coset G/H can be written simply:

δ = L−1(εaP̂a + 1
2λ

abM̂ab)L = ξa(x)P̂a + 1
2ξ

ab(x)M̂ab

Local isometries encoded in ξa(x) = A(x)a
b ε

b +B(x)a
bc λ

bc

Same approach holds for supercoset with L = exp(xaP̂a + θiQ̂
i + θ̄i ˆ̄Qi).

Only θ = 0 part is needed. see e.g. [Alonso-Alberca, Lozano-Tellechea, Ortin ’02]
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Classifying the allowed spaces

Background (constant) fields:

Sij , Zab = Y −
ab −W

+
ab , Ga , Ga

i
j

Zab is a complex field strength, dZ = 0.
If the SUGRA algebra has (complex) central charge, Zab is its field strength.

Ga may be thought of as dual three-form field strength Habc.

Isotriplets Gaij and Sij both break SU(2)R to SO(2)R.

Zab and Sij are complex and break U(1)R.

Three sets of solutions to integrability conditions for background fields:
1. Sij alone is nonzero
2. Gaij alone is nonzero and decomposes as Gaij = gav

ij

3. Ga and/or Zab are nonzero and obey GaZab = 0

Daniel Butter Rigid N = 2 SUSY backgrounds SUSY 2015 11 / 23



Menagerie of N = 2 backgrounds: The simplest cases

Active backgrounds Geometry Supergroup

Sij AdS4 OSp(4|2)

Ga
i
j timelike R× S3 SU(2|1)× SU(2|1)

Ga
i
j null plane wave

Ga
i
j spacelike AdS3 × R SU(1, 1|1)× SU(1, 1|1)

Ga timelike R× S3 SU(2|2)× SU(2)
Ga null plane wave
Ga spacelike AdS3 × R SU(1, 1|2)× SU(1, 1)

Za
b elliptic R1,1 × S2 D(2, 1;∞) ≈ SU(2|2)

Za
b hyperbolic AdS2 × R2 D(2, 1; 0) ≈ SU(1, 1|2)

Za
b elliptic + hyperbolic AdS2 × S2 D(2, 1;α)

Za
b parabolic plane wave
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The two possible R× S3

Round S3 metric description as S1 ↪→ S3 → S2.

ds2 = −dt2 + 1
16g2

[
dθ2 + sin2 θ dφ2 + (dω + cos θ dφ)2]

Arises from timelike background fields: Ga = ga or Gaij = gav
ij .

Round R× S3 has bosonic isometries SO(4) ∼= SU(2)× SU(2).
Ga = ga permits extension to supergroup SU(2|2)× SU(2). [Sen ’90]
SU(2|2)(P0) gives SUSY along with spacetime SU(2) and SU(2)R

{Dαi, D̄β̇j} = −2i δij(σa)αβ̇ (Da + εa
bcdgbMcd)︸ ︷︷ ︸

TI , P0

−8 gαβ̇I
i
j︸ ︷︷ ︸

SU(2)R

Ga
i
j = iga (σ3)ij permits extension to SU(2|1)× SU(2|1)

{Dαi, D̄β̇j} = −2i δij(σa)αβ̇
(
Da − (−1)iεabcdgbMcd + (−)igaA

)
︸ ︷︷ ︸

T i
I
, T i

0

Two copies of (anti)commuting SUSY, with T iI ∈ SU(2) and T i0 ∈ U(1)
General N -extended SUSY: SU(2|p)× SU(2|q) with p+ q = N .
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AdS2 × S2 and D(2, 1;α)
Some historical observations

A non-trivial spherically symmetric solution of N = 2 gauged supergravity is
AdS2 × S2 of equal radii. The eight supercharges give SU(1, 1|2).

This superalgebra describes the near horizon geometry of an extremal BPS
Reissner-Nordstrom black hole.

Zab is the graviphoton field strength.

Can be generalized to different radii supergeometries with supergroup
D(2, 1;α). (These are not SUGRA solutions however.)

[Bandos, Ivanov, Lukierski, Sorokin ’02]

D(2, 1;α) has bosonic body SU(1, 1)× SU(2)× SU(2)R with Qã α̃ i ∈ (2, 2, 2)

{Qã α̃ i, Qb̃ β̃ j} = −λ−εα̃β̃εij Tãb̃︸︷︷︸
AdS2

−λ+εãb̃εij Tα̃β̃︸︷︷︸
S2

+(λ+ + λ−)εãb̃εα̃β̃ Iij︸︷︷︸
SU(2)R

The Euclidean version has been studied recently.
[Bawane, Bonelli, Ronzani, Tanzini ’14; Sinamuli ’14; Rodriguez-Gomez and Schmude ’15]
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Menagerie of N = 2 backgrounds: Mixed cases
New possibilities arise from turning on both Ga and Zab

Active backgrounds Geometry

Ga timelike R× S3

Za
b elliptic R× S3 squashed

Ga null plane wave
Za

b elliptic ‘lightlike’ S3 × R
Za

b parabolic plane wave

Ga spacelike AdS3 × R
Za

b elliptic
0 < |Z|2 < 32G2 timelike stretched AdS3 × R
|Z|2 = 32G2 Heis3 × R
|Z|2 > 32G2 warped ‘Lorentzian’ S3 × R

Za
b parabolic null warped AdS3 × R

Za
b hyperbolic spacelike squashed AdS3 × R
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The squashed R× S3

Squashing the S3 is only possible for one of the supergroups

Ga Ga
ij

SU(2|2)(P0) × SU(2) SU(2|1)× SU(2|1)

SU(2|2)(P0,U) Not possible

Zab

Geometrically, we turn on Zab along S3 and squash the S1 fiber

ds2 = −dt2 + υ

16g2

[
dθ2 + sin2 θ dφ2 + υ(dω + cos θ dφ)2]

υ ≡
(
1 + |Z|

2

32g2

)−1
, 0 ≤ υ < 1

Can repeat for spacelike Ga to give squashings of AdS3 × R.
R factor is spectator =⇒ 3D N = 4 SUSY on squashed AdS3.
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Euclidean backgrounds
The entire analysis can be repeated for Euclidean signature.

But note: 4D N = 2 spinors can be chosen symplectic Majorana-Weyl.
Left-handed and right-handed supercharges completely independent of each other.
We can independently choose Sij and S̃ij as well as Zab and Z̃ab.

Active backgrounds Geometry

Sij and S̃ij S4 and H4

Ga
i
j H3 × R

Ga S3 × R
Z · Z̃ < 32 |G|2 Warped S3 × R
Z · Z̃ = 32 |G|2 Heis3 × R
Z · Z̃ > 32 |G|2 Warped Euclidean AdS3 × R

Zab and Z̃ab H2 × S2, R2 × S2 and H2 × R2

Sij , Zab Flat space (deformed susy)

Last case is flat space but includes full SUSY limit of Ω background.
see e.g. [Klare, Zaffaroni ’13]
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(Abelian) vector multiplets

Vector multiplet superfield: X I ∼ XI + θiλIi + θjσ
abθjF Iab + θiθjY

ijI

Use rigid curved superspace with vector multiplet superfields X .
Actions still given by −i

∫
d4xd4θ E F (X ) + h.c.

F is still prepotential for rigid special Kähler geometry.

If U(1)R is present (Gaij 6= 0), F must be superconformal.
Background fields introduce new couplings in the action.

Zab gives new moment couplings like a background vector multiplet, e.g.

Fab
I
(1

4 ε
abcdZcd(FI −

1
2(FIJ + F̄IJ )XJ )− 1

4gIJX
JZab + h.c.

)
Ga gives composite B ∧ F term via its dual two-form

4Ga(FIDaX̄
I + F̄IDaX

I) = 2i εmnpq Bmn gIJ DpX
I DqX̄

J

Already present in N = 1 case.
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(Abelian) vector multiplets

SUSY transformations are deformed

δλαi
I = (FabI + ZabXI + Z̄abX̄I)(σabξi)α + (YijI + 2SijXI)ξαj

− 2iDaXI (σaξ̄i)α + 4iGa ijXI (σaξ̄j)α

This modifies the conditions for SUSY vacua
Ga ijX

I = 0 Sets XI to zero
Yij

I = −2SijXI = −2S̄ijX̄I Fixes phase of XI

Fab
I = −ZabXI − Z̄abX̄I Generalized attractor equation

Last result generalizes the standard BPS attractor equation FabI = W+
abX

I + h.c.

Straightforward to generalize to non-abelian vector multiplets and hypermultiplets.
Basic properties hold (rigid special Kähler and hyperkähler) with extra
features. For example, in AdS4 (with Sij), hypermultiplet target space must
have extra SO(2)R isometry. [Butter, Kuzenko ’11]
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N = 2∗ action
Choose diagonal metric gIJ = δIJ and adjoint hypermultiplet with scalars (AI , BI).
In Minkowski background, mass term m softly breaks N = 4 to N = 2∗.

In a general rigid background, the Lagrangian is

L = −DmĀIDmAI −DmB̄
IDmBI −DmX̄

IDmXI − 1
8Fab

IF abI

+ 1
2Fab

I(W ab+XI +W ab−X̄I) + LBF + Lpot + fermions

The BF term involves couplings to the potentials for Ga and Ga
ij .

LBF = 2i εmnpqBmn∂pX
I∂qX̄

I + 2 εmnpqBmn
12(∂pA

I∂qĀI + ∂pBI∂qB̄
I)

+ 2 εmnpqBmn
11∂pA

I∂qBI + 2 εmnpqBmn
22∂pĀI∂qB̄

I

New contributions to scalar potential:

Lpot = 2(|µ|2 −m2)(AIĀI +BIB̄
I) + 2|µ|2XIX̄I + 2i µm (AIBI − ĀIB̄

I)

− 1
8ZabZ̄

ab
(

2XIX̄I +AIĀI +BIB̄
I
)
− 1

4(W+
ab)2XIXI − 1

4(W−
ab)2X̄IX̄I

+ 2Ga ijG
a ijXIX̄I + 4G2(AIĀI +BIB̄

I)
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Conclusions / Open questions
We have found all (global) rigid N = 2 spaces and constructed general rigid actions for
vector and hypermultiplets. Some gaps / unanswered questions.

We assumed global manifolds, but what about discrete quotients?
e.g. The R× S3: one can quotient along U(1) fiber, giving a lens space S3/Zp.
Other cases?

Is there a dynamical origin of all rigid supersymmetric backgrounds?
Not for 4D supergravity + normal matter! [Hristov, Looyestijn, Vandoren ’09]
But maybe by compactifying higher dimensional theories.

e.g. D(2, 1;α) from 6D theory vacuum AdS2 × S2 × S2

[Zarembo ’10; Wulff ’14]

Many spaces include trivial R factors, so reduction to Euclidean or Lorentzian 3D
N = 4 is clearly possible. Are there other 3D N = 4 spaces than these?

The full supersymmetric configurations of vector and hypermultiplets are modified
on rigid curved backgrounds. How much does this modify the analysis of quantum
field theories on such curved backgrounds?
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Thanks for your attention!
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