SUSY 2015 - Lake Tahoe 23-29 July 2015

Singlet-like Higgs bosons

Andrea Tesi University of Chicago

Thanks to

Dario Buttazzo

(TUM, Munich / U. Zurich)

Filippo Sala

(Saclay, Paris)

and to Matthew Low (U. Chicago \rightarrow IAS) and LianTao Wang

Introduction

Because I sent my abstract before finishing the work on the diboson excess! ATLAS excess: 7-8 events close to 2 TeV, $WZ \rightarrow JJ$

Because I sent my abstract before finishing the work on the diboson excess! ATLAS excess: 7-8 events close to 2 TeV, $WZ \rightarrow JJ$

w/ Matthew Low and LianTao Wang – excess lifetime ~ 1 year

[Franzosi, Frandsen, Sannino; Thamm, Torre, Wulzer; Allanach, Gripaios, Sutherland; Bian, Liu, Shu; ...]

Total singlets: not colored, no weak interactions...

Total singlets: not colored, no weak interactions...

That's why they're interesting!

Total singlets: not colored, no weak interactions...

That's why they're interesting!

Produced via EWSB effects, non trivial test of the Higgs sector!

Many models like this: Portal, Twin Higgs, non-minimal SUSY

$$\frac{|H|^2}{\Lambda}\bar{S}S, \quad |H|^2S^2, \quad \cdots$$

Total singlets: not colored, no weak interactions...

That's why they're interesting!

Produced via EWSB effects, non trivial test of the Higgs sector!

Many models like this: Portal, Twin Higgs, non-minimal SUSY

$$\frac{|H|^2}{\Lambda}\bar{S}S, \quad |H|^2S^2, \quad \cdots$$

If singlets are collider-stable need an extra j [Craig,Lou, McCullough, Thalapillii] Generally low cross sections, so why are you interested at all?

If the singlet S is a CP-even scalar, it can be singly produced

If the singlet S is a CP-even scalar, it can be singly produced

S decays to SM particles (if heavy enough)

If the singlet S is a CP-even scalar, it can be singly produced

S decays to SM particles (if heavy enough)

This might also help to avoid the jet-tag

Let's add a real singlet to the SM

Let's add a real singlet to the SM

 $V = \mu_H^2 |H|^2 + \lambda_H |H|^4 + \lambda_{HS} S^2 |H|^2 + a_H S |H|^2 + \mu_S^2 S^2 + a_S S^3 + \lambda_S S^4 +$

Let's add a real singlet to the SM $V = \mu_H^2 |H|^2 + \lambda_H |H|^4 + \lambda_{HS} S^2 |H|^2 + a_H S |H|^2 + \mu_S^2 S^2 + a_S S^3 + \lambda_S S^4$ 7 parameters - m_h - v = 5 free parameters!

Let's add a real singlet to the SM $V = \mu_H^2 |H|^2 + \lambda_H |H|^4 + \lambda_{HS} S^2 |H|^2 + a_H S |H|^2 + \mu_S^2 S^2 + a_S S^3 + \lambda_S S^4$ 7 parameters - m_h - v = 5 free parameters!

However the main phenomenology depends on 3 parameters

 ϕ is the mass eigenstate

Two parameters: mass and mixing

At high mass equivalence theorem relates the decay widths

$$\Gamma(\phi \to WW) = 2\Gamma(\phi \to ZZ) = 2\Gamma(\phi \to hh), \quad m_{\phi} \gg m_h$$

These are the dominant BR's, fermionic channels suppressed

Two parameters: mass and mixing

At high mass equivalence theorem relates the decay widths

 $\Gamma(\phi \to WW) = 2\Gamma(\phi \to ZZ) = 2\Gamma(\phi \to hh), \quad m_{\phi} \gg m_h$

These are the dominant BR's, fermionic channels suppressed

[Memo: ϕ is like a heavy SM Higgs, with a narrow width and hh channel]

Hunting the singlet Higgs bosons

Higgs couplings

universal tree-level shift

Direct searches

same h-BR (below $2m_h$)

Hunting the singlet Higgs bosons

universal tree-level shift

same h-BR (below $2m_h$)

Parametrization is simple enough to make simple "projections": $\sin\gamma$ and m_ϕ

[in EFT approach the comparison with direct searches is lost]

Higgs couplings & Direct Searches

Higgs couplings

1σ reach in	s_{γ}^2	$\left 1-\frac{g_{hhh}}{g_{hhh}^{\mathrm{SM}}}\right $	
LHC8	0.2	_	
LHC14	0.08-0.12	-	
HL-LHC	$4-8 \times 10^{-2}$	0.5	
HE-LHC	_	0.2	Snowmass '13
FCC-hh	_	0.08	pre-CDR CEPC
ILC	2×10^{-2}	0.21-0.83	
ILC-up	4×10^{-3}	0.13-0.46	
CLIC	$2-3 \times 10^{-3}$	0.1-0.21	
CEPC	2×10^{-3}	-	
FCC-ee	1×10^{-3}	_	

Higgs couplings

1σ reach in	s_{γ}^2	$\left 1 - \frac{g_{hhh}}{g_{hhh}^{\rm SM}}\right $	
LHC8	0.2	_	
LHC14	0.08-0.12	_	
HL-LHC	$4-8 \times 10^{-2}$	0.5	
HE-LHC	_	0.2	Snowmass '13
FCC-hh	_	0.08	pre-CDR CEPC
ILC	2×10^{-2}	0.21-0.83	
ILC-up	4×10^{-3}	0.13-0.46	
CLIC	$2-3 \times 10^{-3}$	0.1-0.21	
CEPC	2×10^{-3}	_	
FCC-ee	1×10^{-3}	_	

At present a determination of 20% This still allows for *sizeable* deviations

Remember, ϕ is like a heavy SM Higgs

Remember, ϕ is like a heavy SM Higgs

 $\phi \to VV$

[ATLAS 1507.05930; CMS, 1504.00936]

exclusion dominated by $ZZ \to 4\ell$ and $ZZ \to 2\ell 2\nu$

Remember, ϕ is like a heavy SM Higgs + hh channel

Remember, ϕ is like a heavy SM Higgs + hh channel

 $\phi \to hh(4b)$

[ATLAS 2014-005; CMS, 1503.04114]

searches for resonant $\boldsymbol{h}\boldsymbol{h}$

How to get fast projections for exclusions σ vs. m_{ϕ} ?

How to get fast projections for exclusions σ vs. m_{ϕ} ? Use 8 TeV data and rescale them, driven by $B(s_0, L_0, m_0) = B(s, L, m)$ $pp \rightarrow \phi \rightarrow VV$ $pp \rightarrow \phi \rightarrow hh(4b)$ $pr \rightarrow hh(4b)$ p

How to get fast projections for exclusions σ vs. m_{ϕ} ? Use 8 TeV data and rescale them, driven by $B(s_0, L_0, m_0) = B(s, L, m)$ $pp \to \phi \to VV$ $pp \to \phi \to hh(4b)$ 1000 1000 CMS observed, 8 TeV CMS observed, 7+8 TeV $\sigma_{pp \to \phi + X} \operatorname{BR}_{\phi \to ZZ}$ [fb] $r_{pp \to \phi + X} BR_{\phi \to hh}$ [fb] 100 100 13 TeV, 100 fb⁻¹ 10 10 13 TeV, 100 fb⁻¹ 14 TeV, 300 fb-1 14 TeV. 300 fb⁻¹ 0.1 0.1 500 1500 2000 2500 3000 3500 500 1000 2000 1000 1500 2500 3000 3500 md [GeV] ma [GeV]

Rescaling is subject to a number of assumptions, satisfied in these cases

[Salam, Weiler; Thamm, Torre, Wulzer]

[we have plots also for 33 and 100 TeV (see later)]

Who dominate?

We can now compare direct and indirect searches

Direct searches dominate at low masses (at each phase of the experimental program) Look for the singlet!

Who dominate?

We can now compare direct and indirect searches

Direct searches dominate at low masses (at each phase of the experimental program) Look for the singlet!

Models

A few possibilities

Generic singlet

Scalar singlet in the NMSSM

Scalar singlet in the (weakly-coupled) Twin Higgs

Higgs couplings and trilinear

Higgs couplings and trilinear

Triple Higgs coupling is sensitive to v_s (and to quartic couplings)

Higgs couplings and trilinear

Triple Higgs coupling is sensitive to v_s (and to quartic couplings)

Impact of direct searches

 $\phi \to VV$ usually dominant

All constraints together

Strong complementarity between direct and indirect

$\mathcal{W}_{\text{NMSSM}} \supset \lambda S H_u H_d + f(S) \rightarrow \lambda^2 |H_u H_d|^2$

$$\mathcal{W}_{\text{NMSSM}} \supset \lambda S H_u H_d + f(S) \rightarrow \lambda^2 |H_u H_d|^2$$

New tree-level contribution to the Higgs mass
m_h^2 \simeq \lambda^2 v^2 \sin^2(2\beta) + m_Z^2 c_{2\beta}^2 + \Delta^2
ElectroWeak scale less-sensitive to soft masses

$$v^2 \sim \frac{\tilde{m}^2}{\lambda^2} \qquad \tilde{m} \sim \frac{2\lambda}{g} \tilde{m}_{\text{MSSM}}$$

λ gets large at tens of TeV if too large at the weak scale
Tuning in the Higgs mass grows with λ

$$\mathcal{W}_{\text{NMSSM}} \supset \lambda S H_u H_d + f(S) \rightarrow \lambda^2 |H_u H_d|^2$$

New tree-level contribution to the Higgs mass $m_h^2 \simeq \lambda^2 v^2 \sin^2(2\beta) + m_Z^2 c_{2\beta}^2 + \Delta^2$ ElectroWeak scale less-sensitive to soft masses

$$v^2 \sim \frac{\tilde{m}^2}{\lambda^2} \qquad \tilde{m} \sim \frac{2\lambda}{g} \tilde{m}_{\rm MSSM}$$

λ gets large at tens of TeV if too large at the weak scale
Tuning in the Higgs mass grows with λ

 $\lambda \lesssim 1$ complies with the above issues...

... and minimizes the tuning (for moderate aneta) [Gherghetta et al]

$$\sin^2 \gamma = \frac{M_{hh}^2 - m_h^2}{m_\phi^2 - m_h^2}$$

$$M_{hh}^2 = m_Z^2 \cos^2(2\beta) + \lambda^2 v^2 \sin^2(2\beta) + \Delta^2$$

NMSSM

$$\sin^2 \gamma = \frac{M_{hh}^2 - m_h^2}{m_\phi^2 - m_h^2}$$

$$M_{hh}^2 = m_Z^2 \cos^2(2\beta) + \lambda^2 v^2 \sin^2(2\beta) + \Delta^2$$

Twin Higgs [Chacko, Goh, Harnik '04] [Craig's talk and more in the parallel session this afternoon: Curtin, Telem, Salvioni]

Twin Higgs [Chacko, Goh, Harnik '04] [Craig's talk and more in the parallel session this afternoon: Curtin, Telem, Salvioni]

Portal coupling \rightarrow approximate SO(8)/SO(7) gauged by SM and a mirror copy 7 GBs - 3 W - 3W = 1 pGB Higgs [+ σ , radial mode singlet!]

$$V = \lambda_* (|H|^2 + |H'|^2 - f)^2 + \kappa (|H|^4 + |H'|^4) + m^2 (|H|^2 - |H'|^2), \quad m_\sigma \sim \sqrt{\lambda_*} f$$

New particles are total singlet, difficult for LHC, but σ can mix with the Higgs

Portal coupling \rightarrow approximate SO(8)/SO(7) gauged by SM and a mirror copy 7 GBs - 3 W - 3W = 1 pGB Higgs [+ σ , radial mode singlet!]

Twin Higgs [Chacko, Goh, Harnik '04]

$$V = \lambda_* (|H|^2 + |H'|^2 - f)^2 + \kappa (|H|^4 + |H'|^4) + m^2 (|H|^2 - |H'|^2), \quad m_\sigma \sim \sqrt{\lambda_*} f$$

New particles are total singlet, difficult for LHC, but σ can mix with the Higgs

The size of λ_* distinguishes between two UV regimes

Portal coupling \rightarrow approximate SO(8)/SO(7) gauged by SM and a mirror copy 7 GBs - 3 W - 3W = 1 pGB Higgs [+ σ , radial mode singlet!]

$$V = \lambda_* (|H|^2 + |H'|^2 - f)^2 + \kappa \left(|H|^4 + |H'|^4 \right) + m^2 (|H|^2 - |H'|^2), \quad m_\sigma \sim \sqrt{\lambda_*} f$$

New particles are total singlet, difficult for LHC, but σ can mix with the Higgs

The size of λ_* distinguishes between two UV regimes

$$\begin{split} & \text{If } \lambda_* \sim O(1) \\ & \text{radial mode close to } f \\ & \text{look for the singlet!} \\ & \text{w/ Dario Buttazzo and Filippo Sala} \end{split}$$

Twin Higgs [Chacko, Goh, Harnik '04]

If $\lambda_* \sim O(16\pi^2)$ radial mode decoupled Composite Twin Higgs w/ Matthew Low and Liantao Wang [Geller, Telem; Barbieri, Greco, Rattazzi, Wulzer]

Look for the twin Higgs!

Look for the twin Higgs!

If Twin Higgs is weakly coupled, the twin Higgs (singlet) could be visible!

Double Singlet production*

*[aka singlets after a Higgs factory]

Falling like a rock

Pair production drops for $m_{\phi} > m_t$

Falling like a rock

Challenging, but mandatory after the bound from e^+e^- on $\sin^2\gamma \leq 0.1\%$

Chances for $\phi\phi \rightarrow 4W, 4h \text{ (many } b's)$

Conclusions

Looking for singlets is easy and it is motivated by many (natural) models

Looking for singlets is easy and it is motivated by many (natural) models

Thank you!