LHC signals from R-parity violating chargino decays

Anders Kvellestad, University of Oslo

In collaboration with: Bomark, Lola, Osland, Raklev

JHEP 1412 (2014) 121 (arXiv: 1410.0921) JHEP 1405 (2014) 007 (arXiV: 1310.2788)

SUSY 2015

Basic scenario: almost degenerate chargino/neutralino in the MSSM

- Neutralino mass parameters: M₁, M₂, mu
- Chargino mass parameters: M₂, mu
- Smallest parameter dominates mass & mixing of lightest states
- Degeneracy expected in wino (M_2) and higgsino (mu) scenarios

Extend MSSM by trilinear RPV operators

$$W > \lambda_{ijk} L_i L_j \overline{E}_k + \lambda_{ijk} L_i Q_j \overline{D}_k + \lambda_{ijk}'' \overline{U}_i \overline{D}_j \overline{D}_k$$

- Baryon and lepton number violation
- Several couplings strongly constrained, especially products of couplings

Examples of chargino decay modes

Decay rate scaling:

$$\prod_{\text{RPV}} \propto \frac{\sum_{\tilde{\chi}_{1}}^{2} M_{\tilde{\chi}_{1}}^{2}}{M_{\tilde{e}/\tilde{x}}^{4}}$$

Can RPV chargino decays be important?

- Compete with RPC decays to neutralino + pion(s) or I nu
- RPC decay modes depend on chargino-neutralino mass difference

$$\Delta M = M_{\widetilde{\chi}_1^+} - M_{\widetilde{\chi}_1^0}$$

- Wino/higgsino scenarios give small Δm can RPV decays dominate?
- Some RPV decays suppressed by R-chirality (wino chargino)

Investigate using a Bayesian parameter scan

- Likelihood function from M_W , g-2, B-physics, m_{higgs} , LEP limit
- Additional requirement: $\Delta m < 1$ GeV (equivalent to prior req. on M₁, M₂, mu)
- Log priors for dimensionful parameters (prior dependece checked using flat priors)
- RPV couplings not included in scan way too many parameters!
- After scan: introduce a single RPV operator and recalculate decay rates for all points in posterior sample
- For each point, use the maximum allowed coupling value (Allanach et al., hep-ph/9906209)

L1 L2 E1

L₁ L₂ E₁

L₁ L₂ E₁

L1 L2 E1

What about LQD and UDD?

- Similar results for LQD, RPV decays to (I d d) and (nu u d)
- UDD processes suppressed by heavy squark propagators preferred by scan
- When RPC decays dominate, small Δm leads to long chargino lifetime
- LHC searches for kinked tracks important, $\tau > 10^{-11}$ s (arXiv: 1310.3675)

Benchmark collider study

- Focus on LLE
- Benchmark point from posterior sample

Point	RPV_C1	RPV_C2	RPV_C3
$m_{\tilde{\chi}_1^{\pm}}$	252.1	327.7	526.4
Δm	0.119	0.108	0.182
Wino	0.990	0.986	0.989
Higgsino	0.142	0.166	0.148

Point/Coupling	λ_{121}	λ_{122}	λ_{123}	λ_{131}	λ_{132}	λ_{133}	λ_{231}	λ_{232}	λ_{233}
RPV_C1	0.244	0.244	0.260	0.309	0.309	0.013	0.349	0.349	0.372
RPV_C2	0.215	0.215	0.221	0.272	0.272	0.011	0.307	0.308	0.316
RPV_C3	0.369	0.369	0.388	0.467	0.467	0.016	0.527	0.528	0.554

- EW production cross section (NLO): 49.9 fb
- Generate 10⁶ events (smooth distributions), normalize yield to 1 fb⁻¹
- Simulation includes both chargino and neutralino RPV decays

Event selection

- At least three isolated leptons
- pT > 70, 20, 20 GeV
- ETmiss > 100 GeV (neutrinos)

Dominant SM backgrounds

- Diboson production (if no Z veto)
- ttbar production (if Z veto)

Charged trilepton resonance

L₁ L₂ E₃

L1 L3 E3

Identifiable features in trilepton spectra

Identifiable features in trilepton spectra

Identifiable features in trilepton spectra

Comments on collider study

- Cuts kept general to encompass several RPV operators
- Benchmark: early discovery at 13 TeV, but rather optimistic (chargino mass, RPV coupling)
- Cross sections decrease with chargino mass, but RPV decay rates increase
- Useful information also in dilepton invariant mass spectra

Summary

- Direct RPV chargino decays can dominate for small ∆m
- BR for RPV decays increase with chargino mass
- For dominant LLE operator: resonance/features in trilepton spectra
- Signals from RPV chargino decays compliment previous RPV studies

Summary

- Direct RPV chargino decays can dominate for small ∆m
- BR for RPV decays increase with chargino mass
- For dominant LLE operator: resonance/features in trilepton spectra
- Signals from RPV chargino decays compliment previous RPV studies

Thank you!

Backup slides

Parameter	Range	Prior	Reference
$\overline{M_1}$	[-4000, 4000]	log	-
M_2	[0, 4000]	log	-
M_3	[-4000, 4000]	log	-
μ	[-4000, 4000]	log	-
m_{A^0}	[0, 4000]	\log	-
$m_{ ilde{l}}$	[0,7000]	\log	-
$m_{ ilde{q}}$	[0,7000]	\log	-
$m_{ ilde{q}_3}$	[0,7000]	\log	-
A_0	[-7000, 7000]	\log	-
$\tan \beta$	[2, 60]	linear	-
m_t	173.4 ± 1.0	gaussian	[29]
$m_b^{\overline{MS}}(m_b)$	4.18 ± 0.03	gaussian	[30]
M_Z	91.1876 ± 0.0021	gaussian	[30]
α^{-1}	127.944 ± 0.014	gaussian	[30]
α_s	0.1184 ± 0.0007	gaussian	[30]

Tools:
MultiNest 2.17
SOFTSUSY 3.3.5
FeynHiggs 2.9.4
MicrOMEGAS 2.4.5

Observable	Constraint	Likelihood
M_W	80.385 ± 0.021	gaussian
$a_{\mu}^{\mathrm{exp}} - a_{\mu}^{\mathrm{SM}}$	$(26.1 \pm 8.0) \times 10^{-10}$	gaussian
$BR(B_s \to \mu\mu)$	$2.9^{+1.1}_{-1.0} \times 10^{-9}$	from experiment
$BR(b \to s\gamma)$	$(3.55 \pm 0.33) \times 10^{-4}$	gaussian
$R(B \to \tau \nu)$	1.63 ± 0.54	gaussian
m_h	125.0 ± 2.0	gaussian
$m_{\widetilde{\chi}_1^\pm}$	>45	lower limit, hard cut
$m_{ ilde{\chi}_1^\pm}^{\chi_1} - m_{ ilde{\chi}_1^0}$	< 1.0	upper limit, hard cut

No LHC search constraints in scan?

- ullet Most constraints from collider searches do not apply due to combination of RPV and small Δm
- Would in general need separate scans for each coupling...
- Computationally challenging (but we are working on it...)
- Limits on couplings, chargino lifetime, etc. are taken into account when we study the effects of specific RPV operators

Point	RPV_C1	RPV_C2	RPV_C3
$m_{ ilde{\chi}_1^\pm}$	252.1	327.7	526.4
Δm	0.119	0.108	0.182
Wino	0.990	0.986	0.989
Higgsino	0.142	0.166	0.148
M_1	944.1	-1082.0	-728.4
M_2	235.4	311.4	502.3
M_3	1627.6	560.6	3418.6
μ	668.0	668.5	913.2
m_{A^0}	3430.3	2775.5	3220.5
$m_{ ilde{l}}$	503.5	434.6	757.6
$m_{ ilde{q}}$	2156.2	2517.0	4742.9
$m_{ ilde{q}_3}$	6429.4	4951.8	1424.6
A_0	-25.8	2775.5	1498.1
$\tan \beta$	47.1	55.4	46.2

Point/Coupling	λ_{121}	λ_{122}	λ_{123}	λ_{131}	λ_{132}	λ_{133}	λ_{231}	λ_{232}	λ_{233}
RPV_C1	0.244	0.244	0.260	0.309	0.309	0.013	0.349	0.349	0.372
RPV_C2	0.215	0.215	0.221	0.272	0.272	0.011	0.307	0.308	0.316
RPV_C3	0.369	0.369	0.388	0.467	0.467	0.016	0.527	0.528	0.554

LLE123

WZ bkg, same-sign subtraction. Plot: m(+-) - m(++) - m(--)

For a study of the flavour structure in RPV neutralino decays, see arXiv: 1105.4022

Am expressions

Higgsino limit (tree-level):

$$\Delta m = \left[\frac{M_2}{M_1} \tan^2 \theta_W + 1 + \operatorname{sgn} \mu \left(\frac{M_2}{M_1} \tan^2 \theta_W - 1 \right) \sin 2\beta \right] \frac{M_W^2}{2M_2} + \mathcal{O} \left(\frac{1}{M_2^2} \right).$$

- Positive M_1 and $M_2 \rightarrow \Delta m > 300$ MeV
- Negative M_1 : Can have negative Δm if M1 is small, M2 is large and tan β is small
- Main loop contributions from top-stop loops (either sign, mixing) and $\chi(Z)$ -higgsino loops (small unless tan β is large)
- Wino limit (tree-level):

$$\Delta m = \frac{M_W^2}{\mu^2} \frac{M_W^2}{M_1 - M_2} \tan^2 \theta_W \sin^2 2\beta + 2 \frac{M_W^4 M_2 \sin 2\beta}{(M_1 - M_2)\mu^3} \tan^2 \theta_W + \frac{M_W^6 \sin^3 2\beta}{(M_1 - M_2)^2 \mu^3} \tan^2 \theta_W (\tan^2 \theta_W - 1) + \mathcal{O}\left(\frac{1}{\mu^4}\right),$$

- Tree-level contribution small for large tan β
- Leading loop correction from gauge bosons ~ 165 MeV (bino part of Neutralino breaks the degeneracy)
- Smaller Δm requires significant and negative tree-level contribution.