SUSY-related Lepton and Hadron Flavor Results from Belle

Yutaro Sato

For the Belle Collaboration 🥰

(Nagoya Univ., KMI)

27th Aug. 2015, SUSY2015 @ Lake Tahoe, USA

New physics search at Belle

- New particles (e.g. SUSY particles) could enter in the tree, loop, and box diagrams.
 - Observables (such as branching fraction or asymmetry) are modified.

Topics covered in this talk:

- $B \to D^{(*)} \tau \nu$ with hadronic tag (arXiv:1507.03233, submitted to PRD)
- $B \rightarrow \pi \tau \nu$ with hadronic tag
- $B_s o \phi \gamma, \gamma \gamma \text{ (PRD 91, 011101(R)(2015))}$ $A_{\mathrm{CP}}(B o X_{s+d} \gamma) \text{ (PRL 114, 151601 (2015))}$

Belle Experiment

- KEKB accelerator and Belle detector at Tsukuba, Japan.
 - Asymmetric e^+e^- energy to boost B mesons
 - Data taking for 1999-2010
 - Good particle ID capability
 - $(p, \pi^{\pm}, K^{\pm}, \gamma, e, \mu, K_L^0)$
 - Good momentum resolution

$$\bullet \quad \frac{\sigma_{P_t}}{P_t} = 0.19P_t \oplus \frac{0.30}{\beta} \%$$

Hadronic tagging with Neural Network

- Event selection by using NeuroBayes (neural network).
 - 1104 exclusive decays are used.

NIMA 654, 432 (2011)

Especially, useful for final states with neutrinos.

(e.g.)
$$B \rightarrow D^{(*)}$$
τν, πτν, ...

before the selections are applied

$B \to D^{(*)} \tau \nu$ with Hadronic Tag

Sensitive to charged Higgs.

Observables

•
$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D\tau\nu)}{\mathcal{B}(B \to Dl\nu)} (l = e, \mu)$$

- Several systematic uncertainties mostly cancel out in the ratio.
 - V_{cb}, (part of) form factors, experimental efficiencies.
- All measurements indicate $R(D^{(*)})$ higher than SM.

Selection

- B_{tag} is reconstructed by hadronic tagging based on Neural network.
- Leptonic τ decays are used.
 - Same final state as $B \to D^{(*)}lv$
- $4 D^{(*)} l$ final states $(D^{*+} l, D^{*0} l, D^{+} l, D^{0} l)$
- No further tracks or π^0
- $q^2 > 4 \text{ GeV}^2$
- $-0.2 \text{ GeV}^2 < M_{\text{miss}}^2 < 8.0 \text{ GeV}^2$

- Virtual boson mass-squared $q^2 = (p_B p_{D^{(*)}})^2$
 - Missing mass-squared

$$M_{\rm miss}^2 = (p_{\rm Beam} - p_{B_{\rm tag}} - p_{D^{(*)}} - p_l)^2$$

Fit Strategy

 $B \rightarrow D^{(*)} \tau \nu$ with hadronic tag

50F

• Split sample at $M_{\rm miss}^2 = 0.85 \, {\rm GeV^2}/c^4$

Fit Strategy

 $B \rightarrow D^{(*)} \tau \nu$ with hadronic tag

Events with falsely reconstructed $D^{(*)}$

is determined by sideband of Δm (m_D).

• $4 D^{(*)}l$ channels are simultaneously fitted.

- 2 parameters for $R(D^{(*)})$ assuming isospin symmetry
- 2 parameters for cross-feed from D^*l to Dl
- 4 parameters for $B \to D^{**}lv$

Fit for D* l Samples

 $B \rightarrow D^{(*)} \tau \nu$ with hadronic tag

Fit for *Dl* Samples

 $B \rightarrow D^{(*)} \tau \nu$ with hadronic tag

_10

Result

$$R(D) = 0.375^{+0.064}_{-0.063}(\text{stat.}) \pm 0.026(\text{syst.})$$

 $R(D^*) = 0.293^{+0.039}_{-0.037}(\text{stat.}) \pm 0.015(\text{syst.})$

Analysis is repeated for type-II 2HDM with $tan\beta/m_{H+} = 0.5 \text{ GeV}^{-1}$

Belle result is consistent with SM and BaBar result within 2σ.

Search for $B \rightarrow \pi \tau \nu$

Motivation

- Deviation from SM in $B \to D^{(*)} \tau \nu$ decay.
- $B \to \pi \tau \nu$ can be also used for SM test.
 - Decay amplitude

Vector FF

$$\langle \pi^{+}(p)|\bar{u}\gamma_{\mu}b|\bar{B}^{0}(p+q)\rangle = \frac{f_{B\pi}^{+}(q^{2})}{f_{B\pi}^{+}(q^{2})} \left[2p_{\mu} + \left(\frac{1 - m_{B}^{2} - m_{\pi}^{2}}{q^{2}}\right)q_{\mu}\right] + f_{B\pi}^{0}(q^{2})\frac{m_{B}^{2} - m_{\pi}^{2}}{q^{2}}q_{\mu}$$

Scalar FF

- $=\frac{B(B\to\pi\tau\nu)/dq^2}{B(B\to\pi l\nu)/dq^2}$ only depends on the ratio of form factors : $f^0(q^2)/f^+(q^2)$.
- \rightarrow Search for first evidence of $B \rightarrow \pi \tau \nu$

Analysis

$B \rightarrow \pi \tau \nu$ with hadronic tag

Analysis

- B_{tag} is reconstructed by hadronic tag based on Neural network.
- Four one-prong τ decays are used
 - τ → eνν, μ νν, π ν, ρ ν

 $(\tau \rightarrow \mu \nu \nu)$ is only used as veto due to less significance)

- Signal signature
 - exactly 2 oppositely charged tracks in signal side
 - large missing momentum by (two or three) neutrinos

Backgrounds

- No remaining tracks and K_L^0 veto.
- $B \to \pi l \nu$ is removed by selection on $M_{\rm miss}^2$.
- Backgrounds are suppressed using Boosted Decision Trees.
 - Main backgrounds in signal region : $B \to D l \nu$, $B \to D \pi$ with $D \to K_L^0 \pi$
- Signal is extracted from extra energy on ECL ($E_{
 m ECL}$)

- Fit is simultaneously performed in all three modes.
 - 4 fit parameters : 1 parameter for Sig. and 3 parameters for $b \rightarrow c$ Bkg.
 - Other background is fixed and systematic uncertainty is estimated.

- Signal yields : 52 ± 24 events
- $\mathcal{B}(B^0 \to \pi \tau \nu) = (1.52 \pm 0.74) \times 10^{-4}$ (stat. only)
- \rightarrow Close to SM prediction : $(9.35 \pm 0.38) \times 10^{-5}$
- \rightarrow 2.4 σ significance including systematic uncertainties.

Upper Limits Preliminary $B(B^0 \to \pi \tau \nu) < 2.5 \times 10^{-4} @ 90\% \text{ C.L.}$ $B(B^0 \to \pi \tau \nu) < 2.8 \times 10^{-4} @ 95\% \text{ C.L.}$

Dominant syst. sources:

- Tag side efficiency
- K_L^0 veto efficiency

$B_s \rightarrow \phi \gamma, \gamma \gamma$

$B_s \to \phi \gamma$

- First observation by Belle PRL 100, 121801 (2008) (23.6 fb⁻¹)
- → Update with full Belle data (121.4 fb⁻¹)

- Theoretical prediction is 4×10^{-5} with 30% uncertainty $^{Eur.~Phys.~J.C~55,~577~(2008)}_{PRD~75,~054004~(2007)}$
- Most precise measurement by LHCb : $(35.1 \pm 3.5 \pm 1.2) \times 10^{-6}$

$B_s \to \gamma \gamma$

- Current best upper limits : 8.7×10^{-6} @ 90% C.L. by Belle.
- Theoretical predictions
 - $-(2-8)\times10^{-7}$ PRD 56, 5805 (1997)
 - $-(1.8 \pm 0.4) \times 10^{-7}$ PRD 85, 014008 (2012)
 - -1.23×10^{-6} JHEP 08, 054 (2002)
- In R-parity violating model, it may be enhanced.
- → Search for first evidence with full Belle data (121.4 fb⁻¹)

PRL 100, 121801 (2008) (23.6 fb⁻¹)

Result of $B_s \rightarrow \phi \gamma$

- 4-dimensional fit
 - $M_{\rm bc} = \sqrt{E_{\rm beam}^2 \left| \vec{p}_{B_S} \right|^2}$
 - $\Delta E = E_{B_S} E_{beam}$
 - $-C'_{NB}$ (Neural network output for continuum suppression)
 - $-\cos\theta_{\rm hel}$ (ϕ helicity angle)

• $N_{\text{sig}} = 91^{+14}_{-13}$

Result

$$\mathcal{B}(B_s \to \phi \gamma) = (36 \pm 5(\text{stat.}) \pm 3(\text{syst.}) \pm 6(f_s)) \times 10^{-6}$$

(10.7 σ significance including systematics)

Consistent with theoretical prediction and LHCb result.

$$B_s \to \gamma \gamma$$

- 2-dimensional fit $(M_{bc}, \Delta E)$
- Dominant backgrounds of continuum ($ee \rightarrow qq \ (q=u,d,s,c)$) are suppressed by neural network output
 - Modified Fox-Wolfram moments and thrust angle are used.

Upper Limits

$$\mathcal{B}(B_s \to \gamma \gamma) < 3.1 \times 10^{-6} \text{ @ } 90\% \text{ C.L.}$$

$$A_{CP}(B \to X_{s+d}\gamma)$$

•
$$A_{CP} = \frac{\Gamma(\bar{B} \to X_{\bar{S}} + \bar{d}\gamma) - \Gamma(B \to X_{S} + d\gamma)}{\Gamma(\bar{B} \to X_{\bar{S}} + \bar{d}\gamma) + \Gamma(B \to X_{S} + d\gamma)}$$

- Cancellation due to CKM unitarity,
- Negligible theory error

channel	$A_{CP}(SM)$
$B \to X_s \gamma$	[-0.6%, +2.8%]
$B \to X_d \gamma$	[-62%, +14%]
$B \to X_{s+d} \gamma$	0

@ PRL 106, 141801 (2011)

Inclusive analysis

- Only reconstruct photon and charged lepton for tagging.
 - $-1.7 < E_{\gamma}^* < 2.8 \text{ GeV}$
 - $-1.10 < p_I^* < 2.25 \text{ GeV/c}$

$$\gamma$$
 $B \leftarrow \Upsilon(4S) \longrightarrow \overline{B}$
 χ'

•
$$A_{CP} = \frac{N^+ - N^-}{N^+ + N^-}$$
 (using tag-lepton)

Wrong Tag Fraction and Corrections

 $A_{CP}(B \to X_{s+d}\gamma)$

• Measured A_{CP}^{meas} is corrected for various effects.

$$A_{CP}^{\text{true}} = \frac{1}{1 - 2w} (A_{CP}^{\text{meas}} - A_{\text{bkg}} - A_{\text{det}})$$

- 1. Wrong tag factor : $w = 0.1332 \pm 0.0052$
 - $B\bar{B}$ mixing
 - lepton from D decays
 - K/π miss-identified as lepton
- 2. Asymmetry from detector : $A_{\text{det}} = (0.10 \pm 0.22)\%$
 - Lepton ID, tracking
- 3. Asymmetry from *BB* bkg : $A_{\text{bkg}} = (-0.14 \pm 0.78)\%$
 - Low E_{ν} region (E_{ν} < 1.7 GeV) in data

$$A_{CP}(B \to X_{s+d}\gamma)$$

Spectrum after bkg subtraction

• Measure as function of E_{ν} threshold.

$$A_{CP}(B \to X_{s+d}\gamma) = (2.23 \pm 4.02 \pm 0.78)\%$$
 with $E_{\gamma}^* > 2.1 \text{ GeV}$

- Consistent with SM.
- Most precise measurement of $A_{CP}(B \to X_{s+d}\gamma)$.
- Statistically dominated
- Leading systematic comes from BB bkg asymmetry

Summary

- Various B decays are sensitive to new physics.
 - New particles such as SUSY particles might enter in the loop diagrams.
 - Charged Higgs might contribute in addition to the W boson.
- 1. $B \rightarrow D^{(*)} \tau \nu$ with hadronic tag (arXiv:1507.03233, submitted to PRD)
- 2. $B \rightarrow \pi \tau \nu$ with hadronic tag
- 3. $B_s \to \phi \gamma, \gamma \gamma \text{ (PRD 91, 011101(R)(2015))}$
- 4. $A_{\rm CP}(B \to X_{s+d} \gamma)$ (PRL 114, 151601 (2015))
- There are many SUSY-related results not covered in this talk an a lot of ongoing analysis.

Backup

$B \to D^{(*)} \tau \nu$ with Hadronic Tag

- Neurobayes input
 - $-M_{\rm miss}^2$
 - $-E_{\rm ECL}$
 - $-q^2, p_l^{CM}$
 - # of unused π^0 with $|S_{\gamma\gamma}| < 5$
 - Angle between $D^{(*)}$ momentum and vertex direction
 - $-B/D^{(*)}$ decay channel identifiers

$B \rightarrow D^{(*)} \tau \nu$ with Hadronic Tag

$B \to D^{(*)} \tau \nu$ Hadronic tagging

q² distributions in SM and in 2HDM type-II

$B \to D^{(*)} \tau \nu$ with Hadronic Tag

	R[%]	R^* [%]	correlation
$D^{(*(*))}\ell\nu$ shapes	4.2	1.5	0.04
D^{**} composition	1.3	3.0	-0.63
wrong charge factor	0.0	0.0	0.84
$Y_{D^+\ell^-,D_s}$	0.1	0.0	-0.95
$Y_{D^+\ell^-,\mathrm{rest}}$	0.1	0.0	-0.92
$Y_{D^{+}\ell^{-}, \text{wrong}D}$	0.4	0.1	-0.99
$Y_{D^{+}\ell^{-}, \text{wrong}\ell}$	0.3	0.1	-0.99
$Y_{D^0\ell^-,D_s}$	0.0	0.0	0.81
$Y_{D^0\ell^-,\mathrm{rest}}$	0.0	0.0	0.60
$Y_{D^0\ell^-,\mathrm{wrong}D}$	0.3	0.2	0.96
$Y_{D^0\ell^-,\mathrm{wrong}\ell}$	0.2	0.1	0.98
$Y_{D^*+\ell^-,D_s}$	0.1	0.1	-1.00
$Y_{D^{*+}\ell^{-}, \text{rest}}$	0.0	0.0	-0.99
$Y_{D^{*+}\ell^{-}, \text{wrong}D^{*}}$	0.1	0.1	-1.00
$Y_{D^{*+}\ell^{-}, \text{wrong}\ell}$	0.3	0.5	-1.00
$Y_{D^{*0}\ell^-,D_s}$	0.0	0.0	-0.99
$Y_{D^{*0}\ell^-, \text{rest}}$	0.0	0.0	-0.96
$Y_{D^{*0}\ell^-,\mathrm{wrong}D^*}$	0.1	0.1	-0.83
$Y_{D^{*0}\ell^-, \text{wrong}\ell}$	0.1	0.2	-1.00
g_{B^0}	2.2	2.0	-1.00
g_{B^+}	1.7	1.0	-1.00
f_{R,B^0}	2.5	0.7	-0.98
f_{R,B^+}	1.8	0.4	0.86
f_{R,B^0}^st	1.3	2.5	-0.99
f_{R,B^+}^*	0.7	1.1	0.94
$M_{\rm miss}^2$ shape	0.6	1.0	0.00
$o_{ m NB,trafo}$ shape	3.2	0.8	0.00
lepton PID efficiency	0.5	0.5	1.00
Σ	7.1	5.2	-0.32

state	uncertainty in $\%$
D_2^*	42.3
D_0^*	34.6
D_1	14.9
D_1'	36.2
D(2S)	100.0
$D^*(2S)$	100.0

$B \rightarrow D^{(*)} \tau \nu$

$B \to \pi \tau \nu$ with Hadronic Tag

Mode	Signal Yield
$\frac{e}{e}$	$\frac{13.2 \pm 6.2}{13.2 \pm 6.2}$
π	30.6 ± 14.3
ρ	8.1 ± 3.8
$\frac{r}{\text{Total}}$	$\frac{51.9 \pm 24.3}{51.9 \pm 24.3}$
10001	

systematic	σ	$\Delta \sigma = \sigma_{ m none} - \sigma_{ m syst}$	$ \Delta\sigma $ [%]
none	2.74		
eID	2.69	-0.05	1.81
πID	2.55	-0.19	6.87
$\pi^{0} \; ID$	2.67	-0.07	2.47
slow π^0	2.77	+0.03	1.22
K_L veto	2.68	-0.06	2.15
track efficiency	2.60	-0.14	5.11
slow tracks	2.48	-0.25	9.25
finite MC	2.43	-0.31	11.31
background fit	2.46	-0.28	10.22
$BG\;\mathcal{B}$	2.43	-0.30	11.13
V_{ub}	2.51	-0.22	8.22
signal model	2.54	-0.20	7.33
$D^{(*)}\ell u$ model	2.60	-0.14	5.11
tagside	2.57	-0.17	6.14
$B o X_u au u$	2.60	-0.13	4.84
$\sqrt{\sum (\Delta \sigma)^2}$		0.74	27.18