SUSY-related Lepton and Hadron Flavor Results from Belle

Yutaro Sato
For the Belle Collaboration (Nagoya Univ., KMI)
27th Aug. 2015, SUSY2015 @ Lake Tahoe, USA
New physics search at Belle

- New particles (e.g. SUSY particles) could enter in the tree, loop, and box diagrams.
 - Observables (such as branching fraction or asymmetry) are modified.

Topics covered in this talk:

1. $B \rightarrow D^{(*)}\tau\nu$ with hadronic tag (arXiv:1507.03233, submitted to PRD)
2. $B \rightarrow \pi\pi\tau\nu$ with hadronic tag
3. $B_s \rightarrow \phi\gamma, \gamma\gamma$ (PRD 91, 011101(R)(2015))
4. $A_{CP}(B \rightarrow X_{s+d}\gamma)$ (PRL 114, 151601 (2015))
• KEKB accelerator and Belle detector at Tsukuba, Japan.
 – Asymmetric e^+e^- energy to boost B mesons
 – Data taking for 1999-2010
 – Good particle ID capability
 • $(p, \pi^\pm, K^\pm, \gamma, e, \mu, K_L^0)$
 – Good momentum resolution
 • $\frac{\sigma_{P_t}}{P_t} = 0.19P_t \oplus \frac{0.30}{\beta} \%$

Integrate luminosity [fb$^{-1}$]

\[\mathcal{L}_{\text{int.}} > 1 \text{ ab}^{-1} \]
\[\mathcal{L}_{\text{peak}} = 2.11 \times 10^{34} \text{cm}^{-2} \text{s}^{-1} \]

KEKB accelerator

\(e^- \) \(e^+ \)

~3 km circumference

Aerogel Cherenkov cnt.
(n=1.015~1.030)

Central Drift Chamber
small cell +He/C$_2$H$_6$

Si vtx. det.
(3/4 lyr. DSSD)

m / K$_L$ detection
14/15 lyr. RPC+Fe

SC solenoid (1.5T)
\(16X_0 \)

TOF counter
Hadronic tagging with Neural Network

- Event selection by using NeuroBayes (neural network).
 - 1104 exclusive decays are used.
- Especially, useful for final states with neutrinos.
 (e.g.) $B \rightarrow D(\ast)\tau\nu, \pi\tau\nu, \ldots$

B_{tag} is completely reconstructed from hadronic decay ($B \rightarrow D(\ast)X, J/\psi X, \ldots$).

NIMA 654, 432 (2011)
B → D(∗)τν with Hadronic Tag

- Sensitive to charged Higgs.

Observables

- \[R(D^{(*)}) = \frac{\mathcal{B}(B \to D\tau\nu)}{\mathcal{B}(B \to Dl\nu)} \quad (l = e, \mu) \]

- Several systematic uncertainties mostly cancel out in the ratio.
 - \(V_{cb} \) (part of) form factors, experimental efficiencies.

- All measurements indicate \(R(D^{(*)}) \) higher than SM.

Selection

- \(B_{\text{tag}} \) is reconstructed by hadronic tagging based on Neural network.

- Leptonic \(\tau \) decays are used.
 - Same final state as \(B \to D^{(*)}l\nu \)

- 4 \(D^{(*)}l \) final states \((D^{*+}l, D^{*0}l, D^{+}l, D^{0}l) \)

- No further tracks or \(\pi^0 \)

- \(q^2 > 4 \text{ GeV}^2 \)

- \(-0.2 \text{ GeV}^2 < M_{\text{miss}}^2 < 8.0 \text{ GeV}^2 \)

- Virtual boson mass-squared
 \[q^2 = (p_B - p_{D^{(*)}})^2 \]

- Missing mass-squared
 \[M_{\text{miss}}^2 = (p_{\text{Beam}} - p_{B_{\text{tag}}} - p_{D^{(*)}} - p_l)^2 \]
Fit Strategy

- Split sample at $M_{\text{miss}}^2 = 0.85 \text{ GeV}^2/c^4$

Fit in M_{miss}^2 to determine $D^{(*)}l\nu$

Fit in Neural Network output to separate sig. from bkg. (mainly $D^{**}l\nu$)

$B \rightarrow D^{(*)}\tau\nu$ with hadronic tag
• 4 $D^{(*)}l$ channels are simultaneously fitted.

- **Total 12 free parameters**
 - 4 parameters for $B \rightarrow D^{(*)}l\nu$
 - 2 parameters for $R(D^{(*)})$ assuming isospin symmetry
 - 2 parameters for cross-feed from D^*l to Dl
 - 4 parameters for $B \rightarrow D^{**}l\nu$

- **$D^{(*)}l\nu$ enhanced**
- **$D^{(*)}\tau\nu$ enhanced**

Small backgrounds are fixed, relying MC expectation.

Events with falsely reconstructed $D^{(*)}$ is determined by sideband of $\Delta m (m_D)$.
Fit for $D^* l$ Samples

$B \to D^* l\nu$ (normalization)

$B \to D^* \tau\nu$ (signal)
Fit for Dl Samples

$Dl\nu$-enhanced region
$(M_{\text{miss}}^2 < 0.85 \text{ GeV}^2/c^4)$

$D\tau\nu$-enhanced region
$(M_{\text{miss}}^2 > 0.85 \text{ GeV}^2/c^4)$

$B \to D^* l\nu$ (normalization, CF)
$B \to D l\nu$ (normalization)

$D^+ l$

$D^0 l$

$B \to D^{(*)} \tau\nu$ (signal, CF)
$B \to D \tau\nu$ (signal)
Belle result is consistent with SM and BaBar result within 2σ.

Analysis is repeated for type-II 2HDM with $\tan\beta/m_{H^+} = 0.5$ GeV$^{-1}$.

$$R(D) = 0.375_{-0.063}^{+0.064} \text{ (stat.)} \pm 0.026 \text{ (syst.)}$$

$$R(D^*) = 0.293_{-0.037}^{+0.039} \text{ (stat.)} \pm 0.015 \text{ (syst.)}$$
Motivation

- Deviation from SM in $B \to D^{(*)} \tau \nu$ decay.
- $B \to \pi \tau \nu$ can be also used for SM test.
 - Decay amplitude

Vector FF

$$
\langle \pi^+(p) | \bar{u} \gamma_{\mu} b | \bar{B}^0(p + q) \rangle = f_{B\pi}^+(q^2) \left[2p_{\mu} + \left(\frac{1 - m_B^2 - m_{\pi}^2}{q^2} \right) q_{\mu} \right] + f_{B\pi}^0(q^2) \frac{m_B^2 - m_{\pi}^2}{q^2} q_{\mu}
$$

Scalar FF

$$
\frac{B(B \to \pi \tau \nu)/dq^2}{B(B \to \pi l \nu)/dq^2} \text{ only depends on the ratio of form factors: } f^0(q^2)/f^+(q^2).
$$

→ Search for first evidence of $B \to \pi \tau \nu$
Analysis

- B_{tag} is reconstructed by hadronic tag based on Neural network.
- Four one-prong τ decays are used
 - $\tau \rightarrow e\nu\nu, \mu\nu\nu, \pi\nu, \rho\nu$
 - ($\tau \rightarrow \mu\nu\nu$ is only used as veto due to less significance)
- Signal signature
 - exactly 2 oppositely charged tracks in signal side
 - large missing momentum by (two or three) neutrinos

Backgrounds

- No remaining tracks and K_L^0 veto.
- $B \rightarrow \pi l\nu$ is removed by selection on M_{miss}^2.
- Backgrounds are suppressed using Boosted Decision Trees.
 - Main backgrounds in signal region: $B \rightarrow D l\nu, B \rightarrow D\pi$ with $D \rightarrow K_L^0\pi$
- Signal is extracted from extra energy on ECL (E_{ECL})
• Fit is simultaneously performed in all three modes.
 – 4 fit parameters: 1 parameter for Sig. and 3 parameters for $b \rightarrow c$ Bkg.
 – Other background is fixed and systematic uncertainty is estimated.

• Signal yields: 52 ± 24 events
• $\mathcal{B}(B^0 \rightarrow \pi\tau\nu) = (1.52 \pm 0.74) \times 10^{-4}$ (stat. only)
 \rightarrow Close to SM prediction: $(9.35 \pm 0.38) \times 10^{-5}$
 \rightarrow 2.4 σ significance including systematic uncertainties.

Upper Limits
$\mathcal{B}(B^0 \rightarrow \pi\tau\nu) < 2.5 \times 10^{-4}$ @ 90% C.L.
$\mathcal{B}(B^0 \rightarrow \pi\tau\nu) < 2.8 \times 10^{-4}$ @ 95% C.L.

Dominant syst. sources:
• Tag side efficiency
• K_L^0 veto efficiency
$B_s \rightarrow \phi \gamma, \gamma \gamma$

$B_s \rightarrow \phi \gamma$
- First observation by Belle \(\text{PRL 100, 121801 (2008) (23.6 fb}^{-1}) \)
- Update with full Belle data (121.4 fb\(^{-1}\))
- Theoretical prediction is \(4 \times 10^{-5}\) with 30% uncertainty
- Most precise measurement by LHCb: \((35.1 \pm 3.5 \pm 1.2) \times 10^{-6}\)

$B_s \rightarrow \gamma \gamma$
- Current best upper limits: \(8.7 \times 10^{-6}\) @ 90% C.L. by Belle.
- Theoretical predictions
 - \((2 - 8) \times 10^{-7}\) \(\text{PRD 56, 5805 (1997)}\)
 - \((1.8 \pm 0.4) \times 10^{-7}\) \(\text{PRD 85, 014008 (2012)}\)
 - \(1.23 \times 10^{-6}\) \(\text{JHEP 08, 054 (2002)}\)
- In R-parity violating model, it may be enhanced.
 - Search for first evidence with full Belle data (121.4 fb\(^{-1}\))
Result of $B_s \rightarrow \phi \gamma$

- 4-dimensional fit
 - $M_{bc} = \sqrt{E_{\text{beam}}^2 - |\vec{p}_{B_s}|^2}$
 - $\Delta E = E_{B_s} - E_{\text{beam}}$
 - C'_{NB} (Neural network output for continuum suppression)
 - $\cos \theta_{\text{hel}}$ (ϕ helicity angle)

- $N_{\text{sig}} = 91^{+14}_{-13}$

Three signal peaks ($B_s B_s, B_s^* B_s, B_s^* B_s^*$)

$B_s \rightarrow \phi \gamma = (36 \pm 5(\text{stat.}) \pm 3(\text{syst.}) \pm 6(f_s)) \times 10^{-6}$

(10.7σ significance including systematics)

Consistent with theoretical prediction and LHCb result.

$f_s = (17.2 \pm 3.0)\%$

$f_{B_s^* B_s^*} = (87.0 \pm 1.7)\%$

$f_{B_s^* B_s} = (7.3 \pm 1.4)\%$
Result of $B_s \rightarrow \gamma\gamma$

- 2-dimensional fit ($M_{bc}, \Delta E$)
- Dominant backgrounds of continuum ($ee \rightarrow qq$ ($q = u, d, s, c$)) are suppressed by neural network output
 - Modified Fox-Wolfram moments and thrust angle are used.

Upper Limits

$\mathcal{B}(B_s \rightarrow \gamma\gamma) < 3.1 \times 10^{-6}$ @ 90% C.L.
\[A_{CP}(B \rightarrow X_{s+d}\gamma) = \frac{\Gamma(\bar{B} \rightarrow X_{s+d}\gamma) - \Gamma(B \rightarrow X_{s+d}\gamma)}{\Gamma(\bar{B} \rightarrow X_{s+d}\gamma) + \Gamma(B \rightarrow X_{s+d}\gamma)} \]

- Cancellation due to CKM unitarity,
- Negligible theory error

Inclusive analysis

- Only reconstruct photon and charged lepton for tagging.
 - \(1.7 < E_{\gamma}^* < 2.8 \) GeV
 - \(1.10 < p_{l}^* < 2.25 \) GeV/c

\[A_{CP} = \frac{N^+ - N^-}{N^+ + N^-} \] (using tag-lepton)

<table>
<thead>
<tr>
<th>channel</th>
<th>(A_{CP}(SM))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B \rightarrow X_{s}\gamma)</td>
<td>[−0.6%, +2.8%]</td>
</tr>
<tr>
<td>(B \rightarrow X_{d}\gamma)</td>
<td>[−62%, +14%]</td>
</tr>
<tr>
<td>(B \rightarrow X_{s+d}\gamma)</td>
<td>0</td>
</tr>
</tbody>
</table>

@ PRL 106, 141801 (2011)
Wrong Tag Fraction and Corrections

- Measured A_{CP}^{meas} is corrected for various effects.

$$A_{CP}^{\text{true}} = \frac{1}{1 - 2w} (A_{CP}^{\text{meas}} - A_{\text{bkg}} - A_{\text{det}})$$

1. **Wrong tag factor**: $w = 0.1332 \pm 0.0052$
 - $B\bar{B}$ mixing
 - lepton from D decays
 - K/π miss-identified as lepton

2. **Asymmetry from detector**: $A_{\text{det}} = (0.10 \pm 0.22)\%$
 - Lepton ID, tracking

3. **Asymmetry from BB bkg**: $A_{\text{bkg}} = (-0.14 \pm 0.78)\%$
 - Low E_γ region ($E_\gamma < 1.7$ GeV) in data
• Measure as function of E_γ threshold.

\[A_{CP}(B \to X_{s+d}\gamma) = (2.23 \pm 4.02 \pm 0.78)\% \text{ with } E_\gamma^* > 2.1 \text{ GeV} \]

- Consistent with SM.
- Most precise measurement of $A_{CP}(B \to X_{s+d}\gamma)$.
-Statistically dominated
- Leading systematic comes from BB bkg asymmetry
Summary

- Various B decays are sensitive to new physics.
 - New particles such as SUSY particles might enter in the loop diagrams.
 - Charged Higgs might contribute in addition to the W boson.

1. $B \to D^{(*)}\tau\nu$ with hadronic tag (arXiv:1507.03233, submitted to PRD)
2. $B \to \pi\pi\nu$ with hadronic tag
3. $B_s \to \phi\gamma, \gamma\gamma$ (PRD 91, 011101(R)(2015))
4. $A_{CP}(B \to X_{s+d}\gamma)$ (PRL 114, 151601 (2015))

- There are many SUSY-related results not covered in this talk an a lot of ongoing analysis.
Backup
$B \rightarrow D^{(*)}\tau\nu$ with Hadronic Tag

- Neurobayes input
 - M_{miss}^2
 - E_{ECL}
 - q^2, p^C_M
 - # of unused π^0 with $|S_{\gamma\gamma}| < 5$
 - Angle between $D^{(*)}$ momentum and vertex direction
 - $B/D^{(*)}$ decay channel identifiers
$B \rightarrow D^{(*)}\tau\nu$ with Hadronic Tag

q^2 distributions in SM and in 2HDM type-II

$B \rightarrow D^{(*)}\tau\nu$ Hadronic tagging

SM $B \rightarrow D\tau\nu$: $p=64\%$

NP $B \rightarrow D\tau\nu$: $p=53\%$

SM $B \rightarrow D^*\tau\nu$: $p=11\%$

NP $B \rightarrow D^*\tau\nu$: $p=49\%$
$B \to D^{(*)}\tau\nu$ with Hadronic Tag

<table>
<thead>
<tr>
<th></th>
<th>$R[%]$</th>
<th>$R^*[%]$</th>
<th>correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D^{(*)}\tau\nu$ shapes</td>
<td>4.2</td>
<td>1.5</td>
<td>0.04</td>
</tr>
<tr>
<td>D^{**} composition</td>
<td>1.3</td>
<td>3.0</td>
<td>-0.63</td>
</tr>
<tr>
<td>wrong charge factor</td>
<td>0.0</td>
<td>0.0</td>
<td>0.84</td>
</tr>
<tr>
<td>$Y_{D+\ell^-D}$</td>
<td>0.1</td>
<td>0.0</td>
<td>-0.95</td>
</tr>
<tr>
<td>$Y_{D^+\ell^-\text{rest}}$</td>
<td>0.1</td>
<td>0.0</td>
<td>-0.92</td>
</tr>
<tr>
<td>$Y_{D+\ell^-\text{wrong}D}$</td>
<td>0.4</td>
<td>0.1</td>
<td>-0.99</td>
</tr>
<tr>
<td>$Y_{D^+\ell^-\text{wrong}D}$</td>
<td>0.3</td>
<td>0.1</td>
<td>-0.99</td>
</tr>
<tr>
<td>$Y_{D^0\ell^-D}$</td>
<td>0.0</td>
<td>0.0</td>
<td>0.81</td>
</tr>
<tr>
<td>$Y_{D^0\ell^-\text{rest}}$</td>
<td>0.0</td>
<td>0.0</td>
<td>0.60</td>
</tr>
<tr>
<td>$Y_{D^0\ell^-\text{wrong}D}$</td>
<td>0.3</td>
<td>0.2</td>
<td>0.96</td>
</tr>
<tr>
<td>$Y_{D^0\ell^-\text{wrong}D}$</td>
<td>0.2</td>
<td>0.1</td>
<td>0.98</td>
</tr>
<tr>
<td>$Y_{D^0\ell^-\text{wrong}D}$</td>
<td>0.1</td>
<td>0.1</td>
<td>-1.00</td>
</tr>
<tr>
<td>$Y_{D^0\ell^-\text{rest}}$</td>
<td>0.0</td>
<td>0.0</td>
<td>-0.99</td>
</tr>
<tr>
<td>$Y_{D^0\ell^-\text{wrong}D}$</td>
<td>0.3</td>
<td>0.2</td>
<td>0.96</td>
</tr>
<tr>
<td>$Y_{D^0\ell^-\text{wrong}D}$</td>
<td>0.1</td>
<td>0.2</td>
<td>-1.00</td>
</tr>
<tr>
<td>$Y_{D^0\ell^-\text{wrong}D}$</td>
<td>0.1</td>
<td>0.1</td>
<td>-0.83</td>
</tr>
<tr>
<td>$Y_{D^{0}\ell^-\text{wrong}D}$</td>
<td>0.1</td>
<td>0.2</td>
<td>-1.00</td>
</tr>
<tr>
<td>B^0</td>
<td>2.2</td>
<td>2.0</td>
<td>-1.00</td>
</tr>
<tr>
<td>g_{B^0}</td>
<td>1.7</td>
<td>1.0</td>
<td>-1.00</td>
</tr>
<tr>
<td>f_{R,B^0}</td>
<td>2.5</td>
<td>0.7</td>
<td>-0.98</td>
</tr>
<tr>
<td>f_{R,B^+}</td>
<td>1.8</td>
<td>0.4</td>
<td>0.86</td>
</tr>
<tr>
<td>f_{R,B^0}</td>
<td>1.3</td>
<td>2.5</td>
<td>-0.99</td>
</tr>
<tr>
<td>f_{R,B^0}</td>
<td>0.7</td>
<td>1.1</td>
<td>0.94</td>
</tr>
<tr>
<td>$M_{miss \text{ shape}}$</td>
<td>0.6</td>
<td>1.0</td>
<td>0.00</td>
</tr>
<tr>
<td>$\sigma_{\text{NB,trafo shape}}$</td>
<td>3.2</td>
<td>0.8</td>
<td>0.00</td>
</tr>
<tr>
<td>lepton PID efficiency</td>
<td>0.5</td>
<td>0.5</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Σ | 7.1 | 5.2 | -0.32 |

state	uncertainty in %
D_2^* | 42.3 |
D_0^* | 34.6 |
D_1 | 14.9 |
D_1' | 36.2 |
$D(2S)$ | 100.0 |
$D^*(2S)$ | 100.0 |
$B \rightarrow D^{(*)}\tau\nu$
$B \rightarrow D^{(*)}\tau\nu$

$\Delta \chi^2 = 1.0$

$P(\chi^2) = 55\%$

SM prediction
$B \rightarrow \pi \tau \nu$ with Hadronic Tag

<table>
<thead>
<tr>
<th>Mode</th>
<th>Signal Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>13.2 ± 6.2</td>
</tr>
<tr>
<td>π</td>
<td>30.6 ± 14.3</td>
</tr>
<tr>
<td>ρ</td>
<td>8.1 ± 3.8</td>
</tr>
<tr>
<td>Total</td>
<td>51.9 ± 24.3</td>
</tr>
</tbody>
</table>

| systematic | σ | $\Delta \sigma = \sigma_{\text{none}} - \sigma_{\text{syst}}$ | $|\Delta \sigma| [\%]$ |
|------------|---------|--------------------------------|----------------|
| none | 2.74 | | |
| eID | 2.69 | -0.05 | 1.81 |
| π ID | 2.55 | -0.19 | 6.87 |
| π^0 ID | 2.67 | -0.07 | 2.47 |
| slow π^0 | 2.77 | $+0.03$ | 1.22 |
| K_L veto | 2.68 | -0.06 | 2.15 |
| track efficiency | 2.60 | -0.14 | 5.11 |
| slow tracks | 2.48 | -0.25 | 9.25 |
| finite MC | 2.43 | -0.31 | 11.31 |
| background fit | 2.46 | -0.28 | 10.22 |
| BG B | 2.43 | -0.30 | 11.13 |
| V_{ub} | 2.51 | -0.22 | 8.22 |
| signal model | 2.54 | -0.20 | 7.33 |
| $D^{(*)}\ell\nu$ model | 2.60 | -0.14 | 5.11 |
| tagside | 2.57 | -0.17 | 6.14 |
| $B \rightarrow X_u \tau \nu$ | 2.60 | -0.13 | 4.84 |

$\sqrt{\sum (\Delta \sigma)^2} = 0.74$ 27.18