# GLOBAL BAYESIAN ANALYSIS OF THE HIGGS-BOSON COUPLINGS

JORGE DE BLAS



Istituto Nazionale di Fisica Nucleare

Sezione di Roma

IN COLLABORATION WITH:

M. CIUCHINI, E. FRANCO, D. GHOSH, S. MISHIMA, M. PIERINI, L. REINA, L. SILVESTRINI, AND THE **HEPFIT** GROUP

SUSY 2015 Lake Tahoe, Aug 27, 2015

#### INTRODUCTION

- Particle physics after the LHC run I:
  - We have found the Higgs
  - No (conclusive) evidence of new resonances
  - In general, no significant deviations in the data with respect to the SM predictions.
- Indirect searches after the LHC run I:
  - No hint of the nature of physics  $BSM \Rightarrow Model$  Independent
  - Experimental data suggest that the new physics scale must be well above the EW scale  $\Rightarrow$  Effective Lagrangians

The SM as an Effective Theory

$$\mathcal{L}_{\text{Eff}} = \sum_{d=4}^{\infty} \frac{1}{\Lambda^{d-4}} \mathcal{L}_d = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \cdots$$

$$\mathcal{L}_d = \sum_i C_i^d \mathcal{O}_i$$
  $[\mathcal{O}_i] = d$ 

- General parametrization compatible with assumptions
- Provides an ordering principle (Power counting)
- Provides (Lorentz & Gauge invariance) correlations between different types of observables

The SM as an Effective Theory

$$\mathcal{L}_{\text{Eff}} = \sum_{d=4}^{\infty} \frac{1}{\Lambda^{d-4}} \mathcal{L}_d = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \cdots$$

$$\mathcal{L}_d = \sum_i C_i^d \mathcal{O}_i \qquad \qquad [\mathcal{O}_i] = d$$

General parametrization compatible with assumptions



The SM as an Effective Theory

$$\mathcal{L}_{\text{Eff}} = \sum_{d=4}^{\infty} \frac{1}{\Lambda^{d-4}} \mathcal{L}_d = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \cdots$$

$$\mathcal{L}_d = \sum_i C_i^d \mathcal{O}_i \qquad \qquad [\mathcal{O}_i] = d$$

Model-Independent description of physics BSM



The SM as an Effective Theory

$$\mathcal{L}_{\text{Eff}} = \sum_{d=4}^{\infty} \frac{1}{\Lambda^{d-4}} \mathcal{L}_d = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \cdots$$

$$\mathcal{L}_d = \sum_i C_i^d \mathcal{O}_i$$

S. Weinberg, Phys. Rev. Lett. 43 (1979) 1566

 $[\mathcal{O}_i] = d$ 

Dimension 6: 59 operators

W. Buchmüller, D. Wyler, Nucl. Phys. B268 (1986) 621 C. Arzt, M.B. Einhorn, J. Wudka, Nucl. Phys. B433 (1995) 41 B.Grzadkowski, M.Iskrynski, M.Misiak, J.Rosiek, JHEP 1010 (2010) 085

We use the GIMR/Warsaw basis -

(Dimension 7: 20 operators L Lehman, Phys. Rev. D90 (2014) 12, 125023

# EFFECTIVE LAGRANGIAN DESCRIPTION OF NEW PHYSICS IN THE HIGGS BOSON COUPLINGS

• Effective Lagrangian for single Higgs prod. & decay (*hVV* interactions)  

$$\mathcal{L}_{hVV} = h \left( g_{hZZ}^{(1)} Z_{\mu\nu} Z^{\mu\nu} + g_{hZZ}^{(2)} Z_{\nu} \partial_{\mu} Z^{\mu\nu} + g_{hZZ}^{(3)} Z_{\mu} Z^{\mu} + g_{hAA} A_{\mu\nu} A^{\mu\nu} \right. \\ \left. + g_{hZA}^{(1)} Z_{\mu\nu} A^{\mu\nu} + g_{hZA}^{(2)} Z_{\nu} \partial_{\mu} A^{\mu\nu} + g_{hWW}^{(1)} W_{\mu\nu}^{+} W^{-\mu\nu} \right. \\ \left. + \left( g_{hWW}^{(2)} W_{\nu}^{+} D_{\mu} W^{-\mu\nu} + (g_{hWW}^{(2)})^{*} W_{\nu}^{-} D_{\mu} W^{+\mu\nu} \right) + g_{hWW}^{(3)} W_{\mu}^{+} W^{-\mu} + \right. \\ \left. + g_{hGG} \text{Tr} \left[ G_{\mu\nu} G^{\mu\nu} \right] \right)$$

#### To dimension six these receive direct contributions from

$$\begin{array}{c} \textbf{Higgs WFR} \qquad \mathcal{O}_{H\Box} = (H^{\dagger}H) \Box (H^{\dagger}H) \\ \mathcal{O}_{HG} = (H^{\dagger}H) G_{\mu\nu}^{A} G^{A \ \mu\nu} \\ \mathcal{O}_{HW} = (H^{\dagger}H) W_{\mu\nu}^{a} W^{a \ \mu\nu} \\ \mathcal{O}_{HB} = (H^{\dagger}H) B_{\mu\nu} B^{\mu\nu} \\ \mathcal{O}_{HB} = (H^{\dagger}G_{a}H) W_{\mu\nu}^{a} B^{\mu\nu} \\ \mathcal{O}_{HD} = |H^{\dagger}iD_{\mu}H|^{2} \\ \end{array} \qquad \begin{array}{c} g_{hZZ}^{(1)} g_{hAA} \ g_{hZA}^{(1)} \\ g_{hZZ}^{(2)} = 0 \ g_{hZA}^{(2)} = 0 \\ g_{hWW}^{(2)} = 0 \end{array} \right)$$

• Effective Lagrangian for single Higgs prod. & decay (*hff* interactions)

$$\mathcal{L}_{hff} = h \sum_{f} g_{hff} \overline{f_L} f_R + ext{h.c.}$$

• To dimension six these receive direct contributions from:

• Effective Lagrangian for single Higgs prod. & decay (*hVff* interactions)  $\mathcal{L}_{hVff} = hZ_{\mu} \left( \sum_{f} g_{hZff}^{(L)} \overline{f_{L}} \gamma^{\mu} f_{L} + \sum_{f} g_{hZff}^{(R)} \overline{f_{R}} \gamma^{\mu} f_{R} \right) + h \left[ g_{hWud}^{(L)} \left( W_{\mu}^{+} \overline{u_{L}} \gamma^{\mu} d_{L} + \text{h.c.} \right) + g_{hWe\nu}^{(L)} \left( W_{\mu}^{+} \overline{e_{L}} \gamma^{\mu} \nu_{L} + \text{h.c.} \right) + g_{hWud}^{(R)} \left( W_{\mu}^{+} \overline{u_{R}} \gamma^{\mu} d_{R} + \text{h.c.} \right) \right]$ 

Relevant for EW Higgs production, e.g. Zh

To dimension six these receive direct contributions from



- Higgs observables also sensitive to other operators via indirect effects: NP corrections modifying the values of the SM input parameters
  - Example:  $G_F$  extracted from  $\mu$  decay. Modified by

$${\cal O}_{Hl}^{(3)} = (H^\dagger i \overset{\leftrightarrow}{D}{}^a_\mu H) (ar{l} \gamma^\mu \sigma_a l) \qquad {\cal O}_{ll} = (ar{l} \gamma_\mu l) (ar{l} \gamma^\mu l) \, .$$

$$\delta_{G_F} = \left( (C_{H\ell}^{(3)})_{11} + (C_{H\ell}^{(3)})_{22} - \frac{1}{2} ((C_{\ell\ell})_{1221} + (C_{\ell\ell})_{2112}) \right) \frac{v^2}{\Lambda^2}$$

 $igg( egin{array}{lll} {
m Some} \ ``hVV" \ {
m operators} \ {
m also} \ {
m enter} \ {
m in} \ {
m indirect} \ {
m corrections} \ ({
m via} \ M_Z, lpha_{
m em}) \ {
m operators} \ {
m oper$ 

# Indirect effects propagate to all EW observables

Summary: Dim 6 operators contributing to single Higgs prod & decay

$$\begin{array}{l} \overbrace{\mathcal{O}}_{H\square} = \left(H^{\dagger}H\right) \Box \left(H^{\dagger}H\right) \\ \mathcal{O}_{HG} = \left(H^{\dagger}H\right) G^{A}_{\mu\nu} G^{A\ \mu\nu} \\ \mathcal{O}_{HW} = \left(H^{\dagger}H\right) W^{a}_{\mu\nu} W^{a\ \mu\nu} \\ \mathcal{O}_{HB} = \left(H^{\dagger}H\right) B_{\mu\nu} B^{\mu\nu} \\ \mathcal{O}_{HWB} = \left(H^{\dagger}\sigma_{a}H\right) W^{a}_{\mu\nu} B^{\mu\nu} \\ \mathcal{O}_{HD} = \left|H^{\dagger}iD_{\mu}H\right|^{2} \end{array}$$

$$\begin{array}{|c|} \overbrace{\phantom{a}} \mathcal{O}_{Hf}^{(1)} = (H^{\dagger}i \overset{\leftrightarrow}{D}_{\mu} H) (\overline{f} \gamma^{\mu} f) \\ \\ \mathcal{O}_{Hf}^{(3)} = (H^{\dagger}i \overset{\leftrightarrow}{D}_{\mu}^{a} H) (\overline{f} \gamma^{\mu} \sigma_{a} f) \end{array}$$

$$\begin{array}{l} \textbf{J} \textbf{J} \textbf{J} \textbf{J} \textbf{J} \textbf{J} \\ \mathcal{O}_{ll} &= (\bar{l}\gamma_{\mu}l)(\bar{l}\gamma^{\mu}l) \\ \mathcal{O}_{Hl}^{(3)} &= (H^{\dagger}i D_{\mu}^{a}H)(\bar{l}\gamma^{\mu}\sigma_{a}l) \\ \mathcal{O}_{HD} &= \left|H^{\dagger}i D_{\mu}H\right|^{2} \\ \mathcal{O}_{HWB} &= (H^{\dagger}\sigma_{a}H)W_{\mu\nu}^{a}B^{\mu\nu} \end{array}$$

Summary: Dim 6 operators contributing to single Higgs prod & decay

$$\begin{array}{c}
\mathcal{O}_{H\square} = (H^{\dagger}H) \square (H^{\dagger}H) \\
\mathcal{O}_{HG} = (H^{\dagger}H) G_{\mu\nu}^{A} G^{A\,\mu\nu} \\
\mathcal{O}_{HW} = (H^{\dagger}H) W_{\mu\nu}^{a} W^{a\,\mu\nu} \\
\mathcal{O}_{HB} = (H^{\dagger}H) B_{\mu\nu} B^{\mu\nu} \\
\mathcal{O}_{HB} = (H^{\dagger}H) B_{\mu\nu} B^{\mu\nu} \\
\mathcal{O}_{HD} = |H^{\dagger}iD_{\mu}H|^{2} \\
\end{array}$$

$$\begin{array}{c}
\mathcal{O}_{HD} = (H^{\dagger}H) \square (H^{\dagger}H) \\
\mathcal{O}_{eH} = (H^{\dagger}H) \square (H^{\dagger}H) \\
\mathcal{O}_{eH} = (H^{\dagger}H) (\overline{q_{L}}H a_{R}) \\
\mathcal{O}_{dH} = (H^{\dagger}H) (\overline{q_{L}}H d_{R}) \\
\mathcal{O}_{dH} = (H^{\dagger}H) (\overline{q_{L}}H d_{R}) \\
\end{array}$$

$$\begin{array}{c}
\mathcal{O}_{HD} = |H^{\dagger}iD_{\mu}H|^{2} \\
\mathcal{O}_{HD} = |H^{\dagger}iD_{\mu}H| (\overline{f}\gamma^{\mu}f) \\
\mathcal{O}_{Hf}^{(3)} = (H^{\dagger}i\overline{D}_{\mu}^{a}H)(\overline{f}\gamma^{\mu}\sigma_{a}f) \\
\end{array}$$

$$\begin{array}{c}
\mathcal{O}_{U} = (\overline{l}\gamma_{\mu}l)(\overline{l}\gamma^{\mu}l) \\
\mathcal{O}_{HD} = |H^{\dagger}iD_{\mu}H|^{2} \\
\mathcal{O}_{HD} = |H^{\dagger}iD_{\mu}H|^{2} \\
\mathcal{O}_{HWB} = (H^{\dagger}\sigma_{a}H)W_{\mu\nu}^{a}B^{\mu\nu} \\
\mathcal{O}_{HWB} = (H^{\dagger}\sigma_{a}H)W_{\mu\nu}^{a}B^{\mu\nu} \\
\end{array}$$

$$\begin{array}{c}
\mathcal{O}_{U} = (\overline{l}\gamma_{\mu}l)(\overline{l}\gamma^{\mu}d_{R}) \\
\mathcal{O}_{HD} = |H^{\dagger}iD_{\mu}H|^{2} \\
\mathcal{O}_{HWB} = (H^{\dagger}\sigma_{a}H)W_{\mu\nu}^{a}B^{\mu\nu} \\
\mathcal{O}_{HWB} = (H^{\dagger}\sigma_{a}H)W_{\mu\nu}^{a}B^{\mu\nu} \\
\end{array}$$

$$\begin{array}{c}
\mathcal{O}_{HD} = |H^{\dagger}iD_{\mu}H|^{2} \\
\mathcal{O}_{HWB} = (H^{\dagger}\sigma_{a}H)W_{\mu\nu}^{a}B^{\mu\nu} \\
\mathcal{O}_{HWB} = (H^{\dagger}\sigma_{a}H)W_{\mu\nu}^{a}B^{\mu\nu} \\
\end{array}$$

#### EFFECTIVE LAG. DESCRIPTION OF NP IN EWPO

- EWPO sensitive to:
  - Oblique corrections
      $\mathcal{O}_{HD} = \left| H^{\dagger} i D_{\mu} H \right|^2 = \mathcal{O}_H$

$$egin{aligned} D &= |H^{*}iD_{\mu}H| & \mathcal{O}_{HWB} &= (H^{*}\sigma_{a}H)W^{a}_{\mu
u}B^{\mu
u} \ T &= -rac{1}{2lpha}C_{HD}rac{v^{2}}{\Lambda^{2}} & S &= rac{4s_{W}c_{W}}{lpha}C_{HWB}rac{v^{2}}{\Lambda^{2}} \end{aligned}$$

Corrections to EW Vff couplings  
$$\mathcal{O}_{Hf}^{(1)} = (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\overline{f}\gamma^{\mu}f) \quad \mathcal{O}_{Hf}^{(3)} = (H^{\dagger}i\overleftrightarrow{D}_{\mu}^{a}H)(\overline{f}\gamma^{\mu}\sigma_{a}f)$$

$$\delta g_L^{u(
u),d(e)} = -rac{1}{2} \left( C_{Hq(l)}^{(1)} \mp C_{Hq(l)}^{(3)} 
ight) rac{v^2}{\Lambda^2} \qquad \delta g_R^{u,d,e} = -rac{1}{2} C_{Hu,d,e}^{(1)} rac{v^2}{\Lambda^2} \ \delta V_L^{q,l} = C_{Hq,l}^{(3)} rac{v^2}{\Lambda^2}$$

Also sensitive to  $\mathcal{O}_{ll}=(ar{l}\gamma_\mu l)(ar{l}\gamma^\mu l)$  through indirect effects

# COMBINED EWPD+HIGGS DATA CONSTRAINTS ON DIM 6 HIGGS INTERACTIONS

#### HIGGS DATA INCLUDED IN THE ANALYSIS

#### Higgs signal strengths

#### ATLAS & CMS:

ATLAS: arXiv: 1408.7084 CMS: arXiv: 1407.0558

ATLAS: arXiv: 1408.5191 CMS: arXiv: 1412.8662

ATLAS: arXiv: 1412.2641, 1506.06641  $h \to W^+ W^-$  CMS: arXiv: 1312.1129

ATLAS: arXiv: 1501.04943 CMS: arXiv: 1401.5041

ATLAS: arXiv: 1409.6212,1503.05066  $h \to bb$  CMS: arXiv: 1310.3687,1408.1682

CDF: arXiv: 1301.6668 D0: arXiv: 1303.0823

$$h 
ightarrow b \overline{b}$$

 $h 
ightarrow \gamma \gamma$ 

 $h \rightarrow ZZ$ 

 $h 
ightarrow au^+ au^-$ 

# All individual exp. cathegories included in the analysis

| ATLAS                 |                                                     |                     | Ir    | nput me      | easur    | emen            | ts                |   |
|-----------------------|-----------------------------------------------------|---------------------|-------|--------------|----------|-----------------|-------------------|---|
| Individ               | ual analysis                                        | m <sub>H</sub> (G   | eV)   | <b>± 1</b> 0 | on į     | u               |                   |   |
|                       | Overall: μ = 1.17 <sup>+0.27</sup> <sub>-0.27</sub> | 125.4               |       |              |          |                 | · · ·             |   |
| <b>H</b> → γγ         | ggF: $\mu = 1.32_{-0.38}^{+0.38}$                   | 125.4               |       | : :          |          | -               | : :               |   |
|                       | VBF: $\mu = 0.8^{+0.7}_{-0.7}$                      | 125.4               |       | •            |          |                 | : :               |   |
|                       | WH: $\mu = 1.0^{+1.6}_{-1.6}$                       | 125.4               |       |              |          |                 |                   |   |
|                       | ZH: $\mu = 0.1^{+3.7}_{-0.1}$                       | 125.4               |       | •            |          |                 |                   |   |
| ⊔ 、77*                | Overall: $\mu = 1.44^{+0.40}_{-0.33}$               | 125.36              |       | ···· · · ·   |          |                 | <del></del> .     |   |
| n <i>→ LL</i>         | ggF+ttH: $\mu = 1.7^{+0.5}_{-0.4}$                  | 125.36              | ÷     | · · ·        | -        | •               | : :               |   |
|                       | VBF+VH: $\mu = 0.3^{+1.6}_{-0.9}$                   | 125.36              |       | ÷            |          | i               | ÷                 |   |
|                       | Overall: $\mu = 1.16^{+0.24}_{-0.21}$               | 125.36              |       |              | <br>     | · · ·           | <del></del> .<br> |   |
| $H \rightarrow WW^*$  | $ggF: \mu = 0.98^{+0.29}_{-0.26}$                   | 125.36              |       | : :          | <b>H</b> |                 |                   |   |
|                       | VBF: $\mu = 1.28^{+0.55}_{-0.47}$                   | 125.36              |       | : :          |          | -               | : :               |   |
|                       | VH: $\mu = 3.0^{+1.6}_{-1.3}$                       | 125.36              | · ·   | : ;          |          | <b></b>         | •                 |   |
|                       | Overall: μ = 1.43 <sup>+0.43</sup>                  | 125.36              |       | ·            |          | ━┛∶             | <u></u>           | - |
| <b>H</b> → ττ         | $ggF: \mu = 2.0^{+1.5}$                             | 125.36              |       | : :          |          |                 | <u> </u>          |   |
|                       | VBF+VH: $\mu = 1.24^{+0.59}_{-0.54}$                | 125.36              |       |              |          | i               |                   |   |
| _                     | _ Overall: μ = 0.52 <sup>+0.40</sup>                | 125.36              |       | ···· · · ·   | <b></b>  | <br>:           | <del></del>       |   |
| $VH \rightarrow Vbl$  | <b>b</b> WH: $\mu = 1.11^{+0.65}$                   | 125                 |       |              | <b></b>  | -               |                   |   |
|                       | ZH: $\mu = 0.05^{+0.52}_{-0.40}$                    | 125                 |       |              | _        | i               |                   |   |
| H ->                  | -0.43                                               |                     |       |              |          | <u>.  </u><br>: | ····              |   |
| μμ                    | Overall: $\mu = -0.7^{+0.7}_{-3.7}$                 | 125.5               | :     | : :          |          | •<br>•          |                   |   |
| <b>H</b> → <b>Z</b> γ | o :: o =+4.5                                        |                     | :     | : :          |          |                 | ····              |   |
| ,                     | Overall: $\mu = 2.7^{+4.5}_{-4.3}$                  | 125.5               |       | : :          |          | •               | : :               |   |
| ++⊔                   | $b\overline{b}: \mu = 1.5^{+1.1}$                   | 125                 |       | : :          |          |                 | : :               |   |
| un                    | Multilepton: $\mu = 2.1^{+1.4}_{-1.2}$              | 125                 |       | : :          | -        | •               | <u> </u>          |   |
|                       | $\gamma\gamma: \mu = 1.3^{+2.62}_{-1.75}$           | 125.4               |       |              |          |                 |                   |   |
|                       |                                                     | 1                   |       |              |          | .               | ····              |   |
|                       |                                                     |                     | ····· | ~            |          |                 |                   |   |
| √s = 7 TeV            | ′, 4.5-4.7 fb⁻¹                                     |                     | -2    | U            |          | 2               | 4                 |   |
|                       |                                                     | Signal strength (u) |       |              |          |                 |                   |   |
| 18 = 8 IeV            |                                                     |                     | Oig   | i ai s       |          | yui (µ          | 1                 |   |

#### HIGGS DATA INCLUDED IN THE ANALYSIS

Higgs signal strengths:

Γ

$$\mu = \sum_{i} w_{i} r_{i}$$
  $r_{i} = rac{\left[\sigma imes \mathrm{BR}
ight]_{i}}{\left[\sigma_{\mathrm{SM}} imes \mathrm{BR}_{\mathrm{SM}}
ight]_{i}}$ 

$$w_i = rac{\epsilon_i [\sigma_{
m SM} imes {
m BR}_{
m SM}]_i}{\sum_j \epsilon_j^{
m SM} [\sigma_{
m SM} imes {
m BR}_{
m SM}]_j}$$

Assume efficiencies similar to the SM ones  $\epsilon_i pprox \epsilon_i^{
m SM}$ 

• Calculations of cross-sections and decay widths  $\sigma_i = \sigma_i^{SM} + \sum_X a_{hX}^{\sigma_i} g_{hX} + \mathcal{O}(g_{hX}^2)$ 

Depend on the production mode. Encode effects from PDFs, ... Computed using FR+Madgraph + SM K-factors

$$\Gamma_i = (\Gamma_i^{\text{SM}}) + \sum_X a_{hX}^{\Gamma_i} g_{hX} + \mathcal{O}(g_{hX}^2)$$

Computed using eHdecay

#### **EWPD** INCLUDED IN THE ANALYSIS

|     |                  |                                                                  | Data                  | SM Fit                | SM Indirect           | Pull |
|-----|------------------|------------------------------------------------------------------|-----------------------|-----------------------|-----------------------|------|
|     |                  | $lpha_s(M_Z^2)$                                                  | $0.1185{\pm}0.0005$   | $0.1185{\pm}0.0005$   | $0.1184{\pm}0.0028$   | -0.0 |
|     |                  | $\Delta lpha_{ m had}^{(5)}(M_Z^2)$                              | $0.02750{\pm}0.00033$ | $0.02741{\pm}0.00026$ | $0.02725{\pm}0.00042$ | -0.5 |
|     | LEP              | $M_{Z}[{ m GeV}]^{2}$                                            | $91.1875{\pm}0.0021$  | $91.1879{\pm}0.0020$  | $91.199 {\pm} 0.011$  | +1.0 |
| LHC | & <b>Te</b> v    | / $m_t [{ m GeV}]$                                               | $173.34{\pm}0.76$     | $173.6{\pm}0.7$       | $176.9 {\pm} 2.5$     | +1.3 |
|     | LHC              | $m_h [{ m GeV}]$                                                 | $125.09{\pm}0.24$     | $125.09{\pm}0.24$     | $97.40{\pm}25.59$     | -0.9 |
|     | LEP 2            | $M_W[{ m GeV}]$                                                  | $80.385{\pm}0.015$    | $80.365 {\pm} 0.006$  | $80.361 {\pm} 0.007$  | -1.4 |
|     | <b>&amp; Tev</b> | $\Gamma_W[{ m GeV}]$                                             | $2.085{\pm}0.042$     | $2.0890{\pm}0.0005$   | $2.0890{\pm}0.0005$   | +0.1 |
|     |                  | $\Gamma_Z[{ m GeV}]$                                             | $2.4952{\pm}0.0023$   | $2.4945{\pm}0.0004$   | $2.4945{\pm}0.0004$   | -0.3 |
|     |                  | $\sigma_h^0[{ m nb}]$                                            | $41.540{\pm}0.037$    | $41.488{\pm}0.003$    | $41.488{\pm}0.003$    | -1.4 |
|     |                  | $\sin^2	heta_{	ext{eff}}^{	ext{lept}}(Q_{	ext{FB}}^{	ext{had}})$ | $0.2324{\pm}0.0012$   | $0.23144{\pm}0.00009$ | $0.23144{\pm}0.00009$ | -0.8 |
|     |                  | $P^{ m pol}_{	au}$                                               | $0.1465{\pm}0.0033$   | $0.1477{\pm}0.0007$   | $0.1477{\pm}0.0007$   | +0.4 |
|     | ۰.               | $A_\ell(\mathrm{SLD})$                                           | $0.1513{\pm}0.0021$   | $0.1477{\pm}0.0007$   | $0.1472{\pm}0.0008$   | -1.9 |
|     |                  | $A_c$                                                            | $0.670{\pm}0.027$     | $0.6682{\pm}0.0003$   | $0.6682{\pm}0.0003$   | -0.1 |
|     | ~                | $oldsymbol{A}_{oldsymbol{b}}$                                    | $0.923{\pm}0.020$     | $0.93466{\pm}0.00006$ | $0.93466{\pm}0.00006$ | +0.6 |
|     | õ                | $A_{ m FB}^{0,\ell}$                                             | $0.0171{\pm}0.0010$   | $0.0164{\pm}0.0002$   | $0.0163{\pm}0.0002$   | -0.8 |
|     |                  | $A_{ m FB}^{0,c}$                                                | $0.0707{\pm}0.0035$   | $0.0740{\pm}0.0004$   | $0.0740{\pm}0.0004$   | +0.9 |
|     |                  | $A_{ m FB}^{0,b}$                                                | $0.0992{\pm}0.0016$   | $0.1035{\pm}0.0005$   | $0.1039{\pm}0.0005$   | +2.8 |
|     |                  | $R_\ell^{ar 0}$                                                  | $20.767{\pm}0.025$    | $20.752{\pm}0.003$    | $20.752{\pm}0.003$    | -0.6 |
|     |                  | $R^{\check{0}}_{c}$                                              | $0.1721{\pm}0.0030$   | $0.17224{\pm}0.00001$ | $0.17224{\pm}0.00001$ | +0.0 |
|     |                  | $R_b^{ar{0}}$                                                    | $0.21629{\pm}0.00066$ | $0.21578{\pm}0.00003$ | $0.21578{\pm}0.00003$ | -0.8 |
|     |                  |                                                                  |                       |                       |                       |      |

#### THE HEPFIT CODE

- Dim 6 Effective Lagrangian implemented as a model class within the HEPfit code (formerly know as SUSYfit):
  - General High Energy Physics fitting tool to combine indirect and direct searches of new physics (available under GPL on github)
  - Bayesian statistical analysis
  - Stand-alone and library modes to compute observables in a given model
  - Add your own models and observables as external modules
- For technical description of the code see A. Paul's talk on tuesday

• Example: 
$$\kappa$$
 parameters (  $\delta_h = \left(-rac{1}{4}C_{HD} + C_{H\Box}
ight) rac{v^2}{\Lambda^2}$  )

$$egin{split} \kappa_Z &= 1 + \delta_h + rac{1}{2} C_{HD} rac{v^2}{\Lambda^2} - rac{1}{2} \delta_{G_F} \ \kappa_W &= 1 + \delta_h - rac{1}{2(c_W^2 - s_W^2)} \left( 4s_W c_W C_{HWB} rac{v^2}{\Lambda^2} + c_W^2 C_{HD} rac{v^2}{\Lambda^2} + \delta_{G_F} 
ight) \ \kappa_f &= 1 + \delta_h - rac{1}{2} \delta_{G_F} - rac{v}{m_f} rac{C_{fH}}{\sqrt{2}} rac{v^2}{\Lambda^2} \end{split}$$



Jorge de Blas INFN- Sezione di Roma SUSY 2015 LAKE TAHOE, AUG 24, 2015

|        |                                                                                                                                                        | 95% prob. bound on $\frac{C_i}{\Lambda^2}$ [TeV <sup>-2</sup> ] |                    |                    |  |  |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------|--------------------|--|--|--|
|        | Operator                                                                                                                                               | Only EW                                                         | Only Higgs         | EW + Higgs         |  |  |  |
| -      | $\mathcal{O}_{HG} = egin{pmatrix} H^\dagger H G^A_{\mu u} G^{A\mu u} \end{bmatrix}$                                                                    |                                                                 | [-0.0051,  0.0092] | [-0.0051,  0.0092] |  |  |  |
|        | $\mathcal{O}_{HW} = egin{pmatrix} H^\dagger H \end{pmatrix} W^a_{\mu u} W^{a\ \mu u}$                                                                  |                                                                 | [-0.034,  0.014]   | [-0.034,0.014]     |  |  |  |
|        | $\mathcal{O}_{HB} = egin{pmatrix} (H^\dagger H)  \dot{B}_{\mu u} B^{\mu u} \end{split}$                                                                |                                                                 | [-0.0087, 0.0040]  | [-0.0087, 0.0040]  |  |  |  |
|        | $\mathcal{O}_{HWB} ~\left( H^{\dagger} \sigma_{a} H  ight) W^{a}_{\mu u} B^{\mu u}$                                                                    | [-0.010,  0.004]                                                | [-0.008,  0.017]   | [-0.0073,  0.0053] |  |  |  |
|        | ${\cal O}_{HD} \qquad \left  H^\dagger D_\mu H  ight ^2$                                                                                               | [-0.032,0.005]                                                  | [-1.1,  1.6]       | [-0.032,0.005]     |  |  |  |
| a      | $\mathcal{O}_{H\square} \qquad \left( H^\dagger H  ight) \square \left( H^\dagger H  ight)$                                                            |                                                                 | [-1.4,  1.3]       | [-1.4,  1.3]       |  |  |  |
| ti     | ${\cal O}_{Hl}^{(1)} = (H^\dagger i \stackrel{\leftrightarrow}{D}_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$               | [-0.005,0.012]                                                  |                    | [-0.005,0.012]     |  |  |  |
| ta     | $egin{array}{ccc} {\cal O}_{Hl}^{(3)} & (H^\dagger i \overleftrightarrow{D}^a_\mu H) \left( \overline{l_L} \gamma^\mu \sigma_a l_L  ight) \end{array}$ | [-0.012,  0.006]                                                | [-0.47,  0.66]     | [-0.012,  0.006]   |  |  |  |
| ator a | ${\cal O}_{He} ~~ (H^\dagger i {D \over \mu} H) \left( \overline{e_R} \gamma^\mu e_R  ight)$                                                           | [-0.017,  0.005]                                                | —                  | [-0.017,  0.005]   |  |  |  |
|        | ${\cal O}_{Hq}^{(1)} = (H^\dagger i \stackrel{\leftrightarrow}{D}_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$               | [-0.027,0.041]                                                  | [-2,  11]          | [-0.027,  0.041]   |  |  |  |
| ber    | $egin{array}{lll} \mathcal{O}_{Hq}^{(3)} & (H^\dagger i D^a_{\mu} H) \left( \overline{q_L} \gamma^\mu \sigma_a q_L  ight) \end{array}$                 | [-0.011,0.013]                                                  | [-0.42,0.05]       | [-0.012,0.013]     |  |  |  |
| _      | ${\cal O}_{Hu} ~~ (H^\dagger i \stackrel{\leftrightarrow}{D}_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                    | [-0.071,0.077]                                                  | [-4.6,  0.8]       | [-0.072,0.076]     |  |  |  |
|        | ${\cal O}_{Hd} ~~ (H^\dagger i \overleftrightarrow{D}_{\!\mu} H) \left( \overline{d_R} \gamma^\mu d_R  ight)$                                          | [-0.14,0.06]                                                    | [-2,  14]          | [-0.14,  0.06]     |  |  |  |
|        | $\mathcal{O}_{eH} = \left( H^{\dagger} H  ight) \left( \overline{l_L} H e_R  ight)$                                                                    |                                                                 | [-0.027,0.049]     | [-0.027,  0.049]   |  |  |  |
|        | $\mathcal{O}_{uH} = \left( H^\dagger H  ight) \left( \overline{q_L} 	ilde{H} u_R  ight)$                                                               |                                                                 | [-0.62,0.33]       | [-0.62,0.33]       |  |  |  |
| -      | $\mathcal{O}_{dH} = ig( H^\dagger H ig) ig( \overline{q_L} H d_R ig)$                                                                                  |                                                                 | [-0.062,  0.059]   | [-0.062,  0.059]   |  |  |  |
|        | $\mathcal{O}_{ll} ~~ (ar{l} \gamma_\mu l) (ar{l} \gamma^\mu l)$                                                                                        | [-0.010,0.022]                                                  | [-1.3,  0.9]       | [-0.010,0.022]     |  |  |  |

**Preliminary Results** 

|      |                                                                                                                                                         | 95% prob. bound on $\frac{C_i}{\Lambda^2}$ [TeV <sup>-2</sup> ] |                                                                                                       |                    |          |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------|----------|--|
|      | Operator                                                                                                                                                | Only EW                                                         | Only Higgs                                                                                            | EW + Higgs         |          |  |
|      | $\mathcal{O}_{HG} = ig( H^\dagger H ig)  G^A_{\mu u} G^{A\mu u}$                                                                                        |                                                                 | [-0.0051,  0.0092]                                                                                    | [-0.0051,  0.0092] |          |  |
|      | $\mathcal{O}_{HW} = egin{pmatrix} H^\dagger H \end{pmatrix} W^a_{\mu u} W^{a\ \mu u}$                                                                   | <u> </u>                                                        | [-0.034,  0.014]                                                                                      | [-0.034,  0.014]   |          |  |
|      | $\mathcal{O}_{HB} = egin{pmatrix} (H^\dagger H) \dot{B}_{\mu u} B^{\mu u} \end{pmatrix}$                                                                |                                                                 | [-0.0087,  0.0040]                                                                                    | [-0.0087,  0.0040] |          |  |
|      | $\mathcal{O}_{HWB} ~\left( H^{\dagger} \sigma_{a} H  ight) W^{a}_{\mu u} B^{\mu u}$                                                                     | [-0.010, 0.004]  [-0.008, 0.017]                                |                                                                                                       | [-0.0073,  0.0053] |          |  |
| time | $egin{array}{cc} {\cal O}_{HD} & \left  H^{\dagger} D_{\mu} H  ight ^2 \end{array}$                                                                     | [-0.032,0.005]                                                  | [-1.1,  1.6]                                                                                          | [-0.032,0.005]     |          |  |
|      | $\mathcal{O}_{H\square} \qquad \left(H^\dagger H ight) \Box \left(H^\dagger H ight)$                                                                    |                                                                 | [-1.4,  1.3]                                                                                          | [-1.4,  1.3]       | ts       |  |
|      | $\mathcal{O}_{Hl}^{(1)} = (H^\dagger i \stackrel{\leftrightarrow}{D}_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$             | [-0.005, 0.012]                                                 |                                                                                                       |                    | esu      |  |
| ut a | $egin{array}{ccc} {\cal O}_{Hl}^{(3)} & (H^\dagger i \overleftrightarrow{D}^a_\mu H) \left( \overline{l_L} \gamma^\mu \sigma_a l_L  ight) \end{array}$  | [-0.012, 0.006]                                                 | $\left  \frac{\delta g_L^J}{\delta g_R^e} \right  = \left  \frac{\delta g_R^e}{\delta g_R^e} \right $ | < 0.002            | Ř        |  |
| r a  | ${\cal O}_{He}  (H^\dagger i {\dot D}_\mu H) \left( \overline{e_R} \gamma^\mu e_R  ight)$                                                               | [-0.017,  0.005]                                                | $\mid g_L^{f} \mid ' \mid g_R^{e}$                                                                    | $ \sim$            |          |  |
| atc  | $\mathcal{O}_{Hq}^{(1)} = (H^\dagger i D_{\!\mu} H) \left( \overline{q_L} \gamma^\mu q_L  ight)$                                                        | [-0.027,0.041]                                                  |                                                                                                       | ]                  | na       |  |
| per  | $\left[ egin{array}{cc} {\cal O}_{Hq}^{(3)} & (H^\dagger i \overleftrightarrow{D}^a_\mu H) \left( \overline{q_L} \gamma^\mu \sigma_a q_L  ight)  ight.$ | [-0.011,0.013]                                                  | $\left  \left  rac{\delta g_R^{u,a}}{u,d}  ight  \lesssim 0$                                         | 0.01, 0.04         | <u>.</u> |  |
| _    | $egin{array}{ccc} {\cal O}_{Hu} & (H^\dagger i D_{\!\mu} H) \left( \overline{u_R} \gamma^\mu u_R  ight) \end{array}$                                    | [-0.071, 0.077]                                                 |                                                                                                       | ]                  | <b>e</b> |  |
|      | ${\cal O}_{Hd} ~~ \left( H^\dagger i \overleftrightarrow{D}_{\!\mu} H  ight) \left( \overline{d_R} \gamma^\mu d_R  ight)$                               | [-0.14, 0.06]                                                   | [-2, 14]                                                                                              | [-0.14, 0.06]      | 4        |  |
|      | $\mathcal{O}_{eH} = \left( H^{\dagger} H  ight) \left( \overline{l_L} H e_R  ight)$                                                                     |                                                                 | [-0.027,0.049]                                                                                        | [-0.027,  0.049]   |          |  |
|      | $\mathcal{O}_{uH} = \left( H^\dagger H  ight) \left( \overline{q_L} 	ilde{H} u_R  ight)$                                                                |                                                                 | [-0.62,0.33]                                                                                          | [-0.62,0.33]       |          |  |
|      | $\mathcal{O}_{dH} = ig( H^\dagger H ig) ig( \overline{q_L} H d_R ig)$                                                                                   |                                                                 | [-0.062,0.059]                                                                                        | [-0.062,0.059]     |          |  |
|      | $\mathcal{O}_{ll} ~~(ar{l}\gamma_\mu l)(ar{l}\gamma^\mu l)$                                                                                             | [-0.010,0.022]                                                  | [-1.3, 0.9]                                                                                           | [-0.010,  0.022]   |          |  |

|                      |                                                                                                                                             | 95% prob. bound on $\frac{C_i}{\Lambda^2}$ [TeV <sup>-2</sup> ] |                                   |                    |  |  |  |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------|--------------------|--|--|--|
|                      | Operator                                                                                                                                    | Only EW                                                         | Only Higgs                        | EW + Higgs         |  |  |  |
|                      | $\mathcal{O}_{HG} = egin{pmatrix} H^\dagger H \end{bmatrix} G^A_{\mu u} G^{A\mu u}$                                                         |                                                                 | [-0.0051, 0.0092]                 | [-0.0051,  0.0092] |  |  |  |
|                      | $\mathcal{O}_{HW} = egin{pmatrix} H^\dagger H \end{pmatrix} W^a_{\mu u} W^{a\ \mu u}$                                                       | —                                                               | [-0.034, 0.014]                   | [-0.034,  0.014]   |  |  |  |
|                      | $\mathcal{O}_{HB} = egin{pmatrix} (H^\dagger H) \dot{B}_{\mu u} B^{\mu u} \end{pmatrix}$                                                    | <u> </u>                                                        | <b>[-0.0087</b> , <b>0.0040</b> ] | [-0.0087, 0.0040]  |  |  |  |
|                      | $\mathcal{O}_{HWB} ~\left( H^{\dagger} \sigma_{a} H  ight) W^{a}_{\mu u} B^{\mu u}$                                                         | [-0.010,  0.004]                                                | [-0.008, 0.017]                   | [-0.0073, 0.0053]  |  |  |  |
|                      | ${\cal O}_{HD} \qquad \left  H^{\dagger} D_{\mu} H  ight ^2$                                                                                | [-0.032,0.005]                                                  | [-1.1, 1.6]                       | [-0.032,  0.005]   |  |  |  |
| l operator at a time | $\mathcal{O}_{H\square}  \left(H^{\dagger}H ight) \Box \left(H^{\dagger}H ight)$                                                            | Comparable to EWPD bounds                                       |                                   |                    |  |  |  |
|                      | $\mathcal{O}_{Hl}^{(1)} = (H^\dagger i \overleftrightarrow{D}_{\!\mu} H) \left( \overline{l_L} \gamma^\mu l_L  ight)$                       | [-0.005, 0.012]                                                 |                                   | [-0.005, 0.012]    |  |  |  |
|                      | $\mathcal{O}_{Hl}^{(3)} ~~ (H^\dagger i \overleftrightarrow{D}_u^a H) \left( \overline{l_L} \gamma^\mu \sigma_a l_L  ight)$                 | [-0.012,0.006]                                                  | [-0.47,  0.66]                    | [-0.012,  0.006]   |  |  |  |
|                      | ${\cal O}_{He} ~~ (H^\dagger i D_\mu H) \left( \overline{e_R} \gamma^\mu e_R  ight)$                                                        | [-0.017,0.005]                                                  | —                                 | [-0.017,  0.005]   |  |  |  |
|                      | $\mathcal{O}_{Hq}^{(1)} = (H^\dagger i \overleftrightarrow{D}_{\!\!\mu} H) \left( \overline{q_L} \gamma^\mu q_L  ight)$                     | [-0.027,0.041]                                                  | [-2,  11]                         | [-0.027,  0.041]   |  |  |  |
|                      | $egin{array}{lll} {\cal O}^{(3)}_{Hq} & (H^\dagger i \overleftrightarrow{D}^a_\mu H)  (\overline{q_L} \gamma^\mu \sigma_a q_L) \end{array}$ | [-0.011,0.013]                                                  | [-0.42,0.05]                      | [-0.012,  0.013]   |  |  |  |
|                      | ${\cal O}_{Hu} ~~ (H^\dagger i \stackrel{\leftrightarrow}{D}_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$         | [-0.071,0.077]                                                  | [-4.6,  0.8]                      | [-0.072,  0.076]   |  |  |  |
|                      | ${\cal O}_{Hd} ~~ (H^\dagger i \overleftrightarrow{D}_{\!\mu} H) \left( \overline{d_R} \gamma^\mu d_R  ight)$                               | [-0.14,0.06]                                                    | [-2,  14]                         | [-0.14,  0.06]     |  |  |  |
|                      | $\mathcal{O}_{eH} = \left( H^{\dagger} H  ight) \left( \overline{l_L} H e_R  ight)$                                                         |                                                                 | [-0.027,0.049]                    | [-0.027,  0.049]   |  |  |  |
|                      | $\mathcal{O}_{uH} = \left( H^\dagger H  ight) \left( \overline{q_L} 	ilde{H} u_R  ight)$                                                    |                                                                 | [-0.62,  0.33]                    | [-0.62,0.33]       |  |  |  |
|                      | $\mathcal{O}_{dH} = ig( H^\dagger H ig) ig( \overline{q_L} H d_R ig)$                                                                       |                                                                 | [-0.062,  0.059]                  | [-0.062,  0.059]   |  |  |  |
|                      | $\mathcal{O}_{ll} ~~(ar{l}\gamma_\mu l)(ar{l}\gamma^\mu l)$                                                                                 | [-0.010,0.022]                                                  | [-1.3, 0.9]                       | [-0.010,  0.022]   |  |  |  |

Results

Preliminary



#### EWPD vs. Higgs constraints:









**INFN-** SEZIONE DI ROMA

LAKE TAHOE, AUG 27, 2015

#### 95% PROB. BOUNDS ON THE NEW PHYSICS SCALE

|             | $95\%~{ m prob.}~{ m bound}~{ m on}~\Lambda~[{ m TeV}]$ |                                                                                                                            |            |               |            |           |            |            |     |
|-------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------|---------------|------------|-----------|------------|------------|-----|
|             |                                                         |                                                                                                                            | Only       | $\mathbf{EW}$ | Only Higgs |           | EW + Higgs |            |     |
|             |                                                         | Operator                                                                                                                   | $C_i = -1$ | $C_i = 1$     | $C_i = -1$ | $C_i = 1$ | $C_i = -1$ | $C_i = 1$  |     |
|             | $\mathcal{O}_{HG}$                                      | $\left(H^{\dagger}H ight)G^{A}_{\mu u}G^{A\mu u}$                                                                          |            |               | 14.1       | 10.4      | 14.1       | 10.4       |     |
|             | $\mathcal{O}_{HW}$                                      | $ig(H^\dagger Hig)W^{ia}_{\mu u}W^{a\mu u}$                                                                                | <u> </u>   |               | <b>5.5</b> | 8.4       | 5.5        | 8.4        |     |
|             | $\mathcal{O}_{HB}$                                      | $\left(oldsymbol{H}^{\dagger}oldsymbol{H} ight)\dot{B}_{\mu u}B^{\mu u}$                                                   |            |               | 10.7       | 15.7      | 10.7       | 15.7       |     |
|             | $\mathcal{O}_{HWB}$                                     | $\left( H^{\dagger} \sigma_{a} H  ight) W^{a}_{\mu u} B^{\mu u}$                                                           | 9.8        | 15.1          | 11.3       | 7.7       | 11.7       | 13.7       |     |
|             | ${\cal O}_{HD}$                                         | $\left  H^{\dagger} D_{\mu} H  ight ^2$                                                                                    | <b>5.6</b> | 14.1          | 0.9        | 0.8       | 5.6        | 14.0       |     |
| r at a time | ${\mathcal O}_{H\square}$                               | $ig(oldsymbol{H}^{\dagger}oldsymbol{H}ig) \Box ig(oldsymbol{H}^{\dagger}oldsymbol{H}ig)$                                   |            | <u> </u>      | 0.8        | 0.9       | 0.8        | 0.9        | lts |
|             | $\mathcal{O}_{Hl}^{(1)}$                                | $(H^\dagger i \stackrel{\leftrightarrow}{D}_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$         | 14.1       | 9.3           |            |           | 14.1       | 9.3        | esu |
|             | ${\cal O}_{Hl}^{(3)}$                                   | $(H^\dagger i \overleftrightarrow{D}^a_\mu H) \left( \overline{l_L} \gamma^\mu \sigma_a l_L  ight)$                        | 9.3        | 12.8          | 1.5        | 1.2       | 9.3        | 12.7       | 2   |
|             | $\mathcal{O}_{He}$                                      | $(H^\dagger i \overset{\mu}{D}_{\mu} H) \left( \overline{e_R} \gamma^{\mu} e_R  ight)$                                     | 7.7        | 13.6          |            |           | 7.7        | 13.6       |     |
| atc         | $\mathcal{O}_{Hq}^{(1)}$                                | $(H^\dagger i \stackrel{\leftrightarrow}{D}_{\!\mu} H)  (\overline{q_L} \gamma^\mu q_L)$                                   | 6.0        | <b>5.0</b>    | 0.7        | 0.3       | 6.0        | <b>5.0</b> | na  |
| per         | ${\cal O}_{Hq}^{(3)}$                                   | $(H^\dagger i \overleftrightarrow{D}^a_\mu H) \left( \overline{q_L} \gamma^\mu \sigma_a q_L  ight)$                        | 9.4        | 8.7           | 1.5        | 4.4       | 9.2        | 8.9        | Ē   |
|             | ${\cal O}_{Hu}$                                         | $(H^\dagger i \overleftrightarrow{D}_{\!\mu} H)  (\overline{u_R} \gamma^\mu u_R)$                                          | 3.8        | 3.6           | <b>0.5</b> | 1.1       | 3.7        | 3.6        | eli |
|             | ${\cal O}_{Hd}$                                         | $(H^\dagger i \overleftrightarrow{D}_{\!\mu} H) \left( \overline{d_R} \gamma^\mu d_R  ight)$                               | 2.7        | 4.0           | 0.6        | 0.3       | 2.7        | 4.0        | ٦   |
|             | $\mathcal{O}_{eH}$                                      | $\left( oldsymbol{H}^{\dagger}oldsymbol{H} ight) \left( \overline{oldsymbol{l}_{L}}oldsymbol{H}oldsymbol{e}_{R} ight)$     |            |               | 6.0        | 4.5       | 6.0        | 4.5        |     |
|             | $\mathcal{O}_{uH}$                                      | $\left(oldsymbol{H}^{\dagger}oldsymbol{H} ight)\left(\overline{oldsymbol{q}_{L}}	ilde{oldsymbol{H}}oldsymbol{u}_{R} ight)$ |            |               | 1.3        | 1.7       | 1.3        | 1.7        |     |
|             | ${\cal O}_{dH}$                                         | $\left( oldsymbol{H}^{\dagger}oldsymbol{H} ight) \left( oldsymbol{\overline{q_L}}oldsymbol{H}oldsymbol{d_R} ight)$         |            |               | 4.0        | 4.1       | 4.0        | 4.1        |     |
|             | $\mathcal{O}_{ll}$                                      | $(ar{l}\gamma_{\mu}l)(ar{l}\gamma^{\mu}l)$                                                                                 | 10.0       | 6.8           | 0.9        | 1.0       | 10.0       | 6.8        |     |

#### CONCLUSIONS

- Indirect searches are as relevant as ever after the Higgs discovery:
  - No hint of the possible nature of new physics Focus on model-independent analyses  $\Rightarrow$  Effective Lagrangians
- EWPO + Higgs signal strengths (final Run I data) can already test a large set of dimension 6 effective Lagrangian interactions:
  - Bounds on the NP scale in many cases beyond the LHC reach for  $|C_i| \sim 1$ . Still accesible for small  $C_i$ .
  - Complementarity between EWPD & Higgs observables:
    - Higgs data sensitive to interactions not seen by EWPD
    - For the others, EWPD bounds usually dominate over the 8 TeV Higgs bounds
- Observables and dim 6 SM EFT included within the framework of the HEPfit project