SUPERSYMMETRIC DARK MATTER AFTER LHC RUN I

Matthew Dolan, for the MasterCode Collaboration SLAC National Accelerator Laboratory and University of Melbourne

K.J. de Vries^a, E.A. Bagnaschi^b, O. Buchmueller^a, R. Cavanaugh^{c,d}, M. Citron^a, A. De Roeck^{e,f}, M.J. Dolan^g, J.R. Ellis^{h,e}, H. Flächerⁱ, S. Heinemeyer^j, G. Isidori^k, S. Malik^a, J. Marrouche^e, D. Martínez Santos^l, K.A. Olive^m, K. Sakurai^h, G. Weiglein^b

- Joint theory and experimental collaboration.
- Experimental: CMS, LHCb
- Theory: SUSY, DM, Flavour, Precision Electroweak/Higgs

THE GLOBAL FIT GAME

EXPERIMENTAL CONSTRAINTS

We use a suite of constraints from

- Higgs Physics
- Precision Electroweak
- Direct Detection and Cosmology
- Flavour Physics
- LHC SUSY Searches

SoftSusy, FEWZ, FeynHiggs, SuFla, SuperIso, Micromegas, SSARD, HiggsSignals, HiggsBounds, ATOM

See also yesterday's talk.

DARK MATTER PHENOMENOLOGY

Fits provide a rich dataset.

How is relic density set in the pMSSM?

How does LHC probe the pMSSM by mechanism?

Direct detection prospects?

RELIC DENSITY MECHANISMS

Relic density depletion requires relations between sparticle masses.

In the MSSM this happens through resonant DM annihilation ('funnel') or co-annihilation

Resonant/funnel/s-channel

Co-annihilation/t-channel

RELIC DENSITY MECHANISMS

Also for:

- Light Higgs h
- Heavy Higgs A/H

Also for:

- stau co-annihilation
- chargino co-annihilation

Resonant/funnel/s-channel

Co-annihilation/t-channel

RELIC DENSITY MECHANISMS

How to quantify this?

$$\tilde{\tau}_1$$
 coann. (pink): $\left(\frac{m_{\tilde{\tau}_1}}{m_{\tilde{\chi}_1^0}} - 1\right) < 0.15$,

$$\tilde{\chi}_{1}^{\pm}$$
 coann. (green) : $\left(\frac{m_{\tilde{\chi}_{1}^{\pm}}}{m_{\tilde{\chi}_{1}^{0}}} - 1\right) < 0.1$,

$$\tilde{t}_1$$
 coann. (grey): $\left(\frac{m_{\tilde{t}_1}}{m_{\tilde{\chi}_1^0}}\right) - 1 < 0.2$,

$$A/H$$
 funnel (blue) : $\left| \frac{M_A}{m_{\tilde{\chi}_1^0}} - 2 \right| < 0.4$,

focus point (cyan):
$$\left(\frac{\mu}{m_{\tilde{\chi}_1^0}}\right) - 1 < 0.3$$
.

$$h \text{ funnel (magenta)}: \quad \left| \frac{M_h}{m_{\tilde{\chi}_1^0}} - 2 \right| < 0.4,$$

$$Z$$
 funnel (orange) : $\left| \frac{M_Z}{m_{\tilde{\chi}_1^0}} - 2 \right| < 0.4$.

Conditions cross-checked from Micromegas output

CONSTRAINED MODELS

300/fb 95% exclusion estimate

Squark Gluino mass plane

Lightest chargino-neutralino mass plane

Stop neutralino mass plane

Co-annihilation requires
LSP and other sparticle to
be near degenerate.

Possibility of long-lived particles?

This possibility is not realized in the pMSSM

LONG LIVED SPARTICLES

In constrained models, squark/gluino limits also push up the LSP mass

Heavier LSP implies greater NLSP degeneracy for correct annihilation cross-section

CMSSM

LONG LIVED SPARTICLES

In constrained models, squark/gluino limits also push up the LSP mass

Heavier LSP implies greater NLSP degeneracy for correct annihilation cross-section

DIRECT DETECTION PHENOMENOLOGY

SUMMARY OF DETECTABILITY

DM	Exp't	Models			
mechanism		CMSSM	NUHM1	NUHM2	pMSSM10
$ ilde{ au}_1$	LHC	$\checkmark E_T, \checkmark LL$	$(\checkmark \not\!\!E_T, \checkmark \text{LL})$	$(\checkmark \not\!\!E_T, \checkmark \text{LL})$	$(\checkmark \cancel{E}_T), \times LL$
coann.	DM	(√)	(√)	×	×
$\tilde{\chi}_1^{\pm}$	LHC	-	×	×	$(\checkmark \not\!\!E_T)$
coann.	DM	- 20 30 -	\checkmark	✓	(√)
$ ilde{t}_1$	LHC	——————————————————————————————————————	-	$\checkmark E_T$	_
coann.	DM	-		×	_
A/H	LHC	✓ A/H	$(\checkmark A/H)$	$(\checkmark A/H)$	-
funnel	DM	✓	\checkmark	(✓)	- · · · · · · · · · · · · · · · · · · ·
Focus	LHC	$(\checkmark E_T)$	_		<u> </u>
point	DM	✓	-	- ·	- 5
h, Z	LHC	= =		-	$(\checkmark \not\!\!E_T)$
funnels	DM	<u> </u>	_	- 177	(√)

INDIRECT DETECTION

Also Weniger's talk

Will be interesting to incorporate recent Fermi-LAT dwarf satellite limits

Indirect detection constraints from Fermi/HESS constrain heavier (wino) states

Rico, Wood, Drlica-Wagner, Aleksic 2015

Cohen, Lisanti, Pierce, Slatyer 2013

SUMMARY

DD and Collider searches will probe variety of DM mechanisms in near future

Charged track searches in constrained models

Run II + CTA/SKA/HESS/Fermi-LAT = Interesting times ahead!