

Latest results on the Higgs boson in the **diphoton** Channel

Florian Bernlochner University of Bonn, Germany

on behalf of the ATLAS collaboration

SUSY 2015, Lake Tahoe

Probing the Higgs Boson in the diphoton channel

- Higgs Boson's discovery 2012 put mass generation of the Standard Model on firm footing.
- More and more transition from discovery to precise measurements; characterizing Higgs production, decay and mass.
- For general properties see talk from Peter Rados (Monday), ttH talk from Julian Bouffard (Tuesday), Couplings talk from Mairo Lacer (Tuesday), High mass talk from Graham Cree (Friday).

 $H \rightarrow \chi \chi$ decay is a rare process in the SM:

Connection to supersymmetry and Unification and fundamental Interactions?

Probing the Higgs in the diphoton channel

- Events selected by dedicated diphoton triggers
- Photon energies calibrated using energy scale derived from Z→e⁺e⁻ and others processes.

Invariant Mass:

$$m_{\gamma\gamma} = \sqrt{2E_1 E_2 (1 - \cos \alpha)},$$

Opening angle with respect to their production vertex

Towards Higgs precision Physics

Present three recent results and a short status report on Run 2:

- Search for Dark Matter in Events with Missing Transverse Momentum and Higgs boson decaying to two photons
- II. Inclusive and differential Higgs boson cross section measurements
- III. Constraints on non-SM Higgs boson interactions with fiducial cross sections.
- IV. In case you missed it Run 2 started!

Dark Matter Search with Missing Transverse Momentum in the Higgs Boson to Diphoton Channel

http://arxiv.org/abs/1506.01081 Accepted by PRL

- Analysis idea:
 - Look for an excess in Higgs boson to diphoton Events associated with Missing transverse momentum.

Very statistically Limited at this point, will be very interesting with full Run II data.

Measurement of the total and differential Higgs boson production cross section

http://arxiv.org/abs/1504.05833 Accepted by PRL

- Analysis idea:
 - Combine $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4I$ fiducial event yields by accounting for the difference in branching fraction and acceptance

- Inclusive cross section result:
 - Compared to **N3LO** result from Anastasiou et al. http://arxiv.org/abs/1503.06056
 - Good agreement between channels.
 - Cross section a bit high in comparison to SM
- Inclusive and Exclusive Jet cross sections

Total cross-sect	ion calculations
LHC-XS [10]	NNLO+NNLL a,b,c
ADDFGHLM [27–30]	$N^3LO^{a,b,c}$
Analytical differential of	eross-section predictions
HRES 2.2 [20, 21]	NNLO+NNLL a,e,f
STWZ [31], BLPTW [32]	NNLO+NNLL c,d,e,g,h
JetVHeto 2.0 [33–35]	NNLO+NNLL $^{\mathrm{a,c,e}}$
Monte Carlo e	vent generators
SHERPA 2.1.1 [36, 37]	$H+0,1,2$ jets @NLO $^{\mathrm{i,j}}$
MG5_aMC@NLO [38, 39]	$H+0,1,2$ jets @NLO $^{\mathrm{i},\mathrm{k},\mathrm{l}}$
POWHEG NNLOPS [40, 41]	$NNLO_{\geq 0j}, NLO_{\geq 1j}^{e,l,m}$

Constraining non-SM Higgs boson interactions using differential cross sections

http://arxiv.org/abs/1508.02507 Submitted to PLB

Effective Field Theory Analysis of differential cross sections

- Analysis idea:
 - Simultaneous analysis of several differential cross sections to probe for New Physics.
 - Problem: all measured from same data → need statistical correlations.

Can be obtained using **bootstrapping** approach i.e. exploit large amount of background to estimate correlations.

Effective Field Theory Analysis of differential cross sections

Effective Field theory:

 $S_{trongly}$ Interacting Light H_{iggs}

arXiv:1303.3876

arXiv:hep-ph/0703164

Extends SM by adding point-like interactions

$$\mathcal{L} = \bar{c}_{\gamma} O_{\gamma} + \bar{c}_{g} O_{g} + \bar{c}_{HW} O_{HW} + \bar{c}_{HB} O_{HB}$$
$$+ \tilde{c}_{\gamma} \tilde{O}_{\gamma} + \tilde{c}_{g} \tilde{O}_{g} + \tilde{c}_{HW} \tilde{O}_{HW} + \tilde{c}_{HB} \tilde{O}_{HB},$$

Data points published on HepData http://arxiv.org/abs/1407.4222 JHEP09(2014)112

Limits on \overline{c}_g and \overline{c}_v

Other operators:

→ No significant deviation from SM observed.

Coefficient	95% 1 – <i>CL</i> limit
\bar{c}_{γ}	$[-7.4, 5.7] \times 10^{-4} \cup [3.8, 5.1] \times 10^{-3}$
\tilde{c}_{γ}	$[-1.8, 1.8] \times 10^{-3}$
\bar{c}_g	$[-0.7, 1.3] \times 10^{-4} \cup [-5.8, -3.8] \times 10^{-4}$
$\mid ilde{c}_g \mid$	$[-2.4, 2.4] \times 10^{-4}$
\bar{c}_{HW}	$[-8.6, 9.2] \times 10^{-2}$
\tilde{c}_{HW}	[-0.23, 0.23]

Run 2 & Summary

Summary and Run 2

- Showed you many exciting Run 1 results using the Higgs boson to diphoton channel.
 - Transition from discovery to more precision results.
 - Probe the SM character by performing as model independent measurements as possible.
 - Excluded large non-SM contributions of individual operators.
 - All measurements are consistent with the SM.
 - Information public so that outsiders can perform similar tests.

- Started Run 2 data taking
 - Diphoton mass distribution (background is not subtracted)
- Excited to get 13 TeV results!

Backup

How did we find the Higgs?

- In a signal strength fit, category II gets more weight than category I due to the higher expected S/B
- Events from a very specific region of phase space can get very high weight in a combined fit.

PTt

Problem:

if efficiencies are modelled wrong, get a biased result

BDT

Pretend to measure all of phase space, but effective sensitivity from a small, very specific region.

Fiducial cross sections try to avoid such extrapolations

In particle physics

a fiducial cross-section is a cross-section measured only for the fiducial region, a clearly defined region in phase-space in which the detector operates with high efficiency, without extrapolating to regions where the experiment has no sensitivity.

To obtain a cross section, one needs to account for migrations in & outside the 'true' or 'truth' fiducial region.

This is called 'unfolding'

Fiducial and Differential Cross Section Measurements in the diphoton channel

http://arxiv.org/abs/1407.4222 Published in JHEP09(2014)112

- Analysis idea straightforward:
 - Bin measured Candidates in observables of interest.
 - Perform Signal + Background fit in m_{γγ} to extract H→γγ events.
 - Account for detector migration and overall efficiency effects and unfold yields into truth fiducial region.

 Measured O(20) observables and fiducial regions:

Ratio of 1st moment relative to data