Search for the pseudoscalar Higgs boson A of two Higgs doublet models (2HDM) with the ATLAS detector

ON BEHALF OF THE ATLAS COLLABORATION SAPIENZA UNIVERSITÀ DI ROMA

SUSY 2015, Lake Tahoe, CA, August 23-29, 2015

INFN

The story so far

- 2012 discovery by ATLAS & CMS of a new resonance, with properties compatible with that of SM Higgs
- No surprises so far for CP properties and couplings; uncertainties on $\sigma \times BR \approx$ 20-30%

ATLAS Preliminary - g(obs.) Total uncertainty m. = 125.36 GeV ±1σ on μ $H \rightarrow \gamma \gamma$ $\mu_{\mu\nu} = 1.17^{+0.28}_{-0.26}$ $\mu_{exp} = 1.00^{+0.25}_{-0.23}$ $H \rightarrow ZZ^{*}$ $\mu_{obs} = 1.46^{+0.40}_{-0.34}$ $\mu_{exp} = 0.99^{+0.31}_{-0.26}$ $H \rightarrow WW^* \mu_{obs} = 1.18^{+0.24}_{-0.21}$ $\mu_{exp} = 1.00^{+0.21}_{-0.19}$ $H \rightarrow b\overline{b}$ $\mu_{obs} = 0.63^{+0.39}_{-0.37}$ $\mu_{exp} = 1.00^{+0.41}_{-0.38}$ $H \rightarrow \tau \tau$ $\mu_{obs} = 1.44^{+0.42}_{-0.37}$ $\mu_{exp} = 1.00^{+0.36}_{-0.32}$ $\mu_{obs} = -0.7^{+3.7}_{-3.7}$ $H \rightarrow \mu\mu$ $\mu_{exp} = 1.0^{+3.4}_{-3.5}$ $H \rightarrow Z\gamma$ $\mu_{obs} = 2.7^{+4.6}_{-4.5}$ $\mu_{exp} = 1.0^{+4.2}_{-4.2}$ Combined $\mu_{11} = 1.18^{+0.15}_{-0.14}$ $\mu_{evo} = 1.00^{+0.13}_{-0.12}$ 2 3 s = 7 TeV, 4.5-4.7 fb⁻¹ Signal strength (u) vs = 8 TeV 20.3 fb⁻¹

ATLAS-CONF-2015-007

- 2 Higgs doublets, 5 particles: *h* and *H* CP-even, *A* CP-odd, H^{\pm}
 - Only one among the possible models, but an important benchmark for interpreting experimental results
- 7 free parameters (with minimum assumptions: no CP-violation in Higgs sector, no FCNC)
 - 4 masses
 - 1 soft symmetry breaking parameter
 - ► $\tan \beta = v_2/v_1$, ratio of the vacuum expectation values of the doublets
 - α , mixing angle between *h* and *H*. Often $\cos(\beta \alpha)$ is used as parameter, which controls couplings (in particular $\mathcal{BR}(H \to VV)$, $\mathcal{BR}(A \to Zh) \propto \cos(\beta \alpha)$, for $\cos(\beta \alpha) = 0$ then $h_{2HDM} \to h_{SM}$)
- Classified depending on the structure of the couplings in 4 types
 - Type-I (Fermiophobic in the zero mixing limit)
 - Type-II (MSSM-like)
 - Lepton-specific
 - Flipped

	Type I	Type II	Lepton-Specific	Flipped
kv	$sin(\beta - \alpha)$	$sin(\beta - \alpha)$	$sin(\beta - \alpha)$	$sin(\beta - \alpha)$
k _u	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$
k _d	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$
kε	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha)/\sin(\beta)$

- At tree level the SUSY Higgs sector is as in Type-II
- Model independent parametrization of the Higgs sector for MSSM: hMSSM, see Djouadi et al. 1502.05653

ATLAS Preliminary

2HDM Flipped

ve = 7 TeV/ 4.5-4.7 fb

(s = 8 TeV, 20.3 fb)

0

02.04.06.08.1

is = 7 TeV. 4.5-4.7 fb

15 - 8 TeV 20.3 fb⁻¹

 $\cos(\beta \cdot \alpha)$

2HDM parameter space is significantly constrained by hSM couplings measurements

2HDMs PHENOMENOLOGY

- For low tan β and $m_X < 2m_{top}$ most sensitive channels:
 - $H \rightarrow hh, H \rightarrow ZZ, H \rightarrow WW, H \rightarrow \tau \tau$
 - $A \rightarrow Zh$
- For high tan β both are completely dominated by $b\overline{b}$ (search with associated production) and $\tau\tau$

Model-independent search for scalar resonances

- Key search for high-tan β MSSM
- Search channels:
 - $\tau \tau \rightarrow \ell \ell (+neutrinos)$, low mass
 - $\tau \tau \rightarrow \ell$ + *hadrons*(+*neutrinos*), low/high mass
 - $\tau \tau \rightarrow hadrons(+neutrinos)$, high mass

Neutrinos in the final state, thus complete kinematics reconstruction is not possible

Search for h/H/A ightarrow au au

- b vetoed and b tagged categories in search region m_{H/A} < 200 GeV
- Improved sensitivity for gg and b-associated production modes

- High tan β 2HDMs significanlty constrained for m_A ≪1 TeV
- High tan β, m_A ≈1 TeV region is a target for very early Run-2 measurements
- Low tan β, m_A ≈300 GeV region need to be explored by other searches

- High tan β 2HDMs significanlty constrained for m_A ≪1 TeV
- High tan β, m_A ≈1 TeV region is a target for very early Run-2 measurements
- Low tan β, m_A ≈300 GeV region need to be explored by other searches

SEARCH FOR THE PSEUDOSCALAR A BOSON - M. BAUCE - LAKE TAHOE, 23-29/08/2015

 $A \rightarrow Zh \rightarrow \ell \ell \tau \tau$

- $\tau \tau$ decay reconstructed with MMC, improving $m_{\tau^+ \tau^- \ell \ell}$
- Constraints to $m_{\ell\ell}$ and $m_{\tau\tau}$: $m_A^{rec} = m_{\ell\ell\tau\tau} - m_{\ell\ell} - m_{\tau\tau} + m_Z + m_h$
- σ(m_A)/m_A ≈3-5%

- $\ell\ell$: 2 *b*-jets selected, >2 vetoed, m_{bb} constrained to m_h and \in [105,145] GeV range. $\sigma(m_A)/m_A \approx 2-3\%$
- νν: discriminant variable

$$m_{A}^{rec} = \sqrt{E_{T}^{bb} + E_{T}^{miss}}^{2} + (\vec{p}_{T}^{bb} + \vec{E}_{T}^{miss})^{2}$$

Multijet background from data anti-isolated samples, all others from MC simulations.

From a fit to the reconstructed m_A distributions in the different channels, upper limit on the production cross section.

The result is interpreted in the parameter space of 2HDM benchmarks

and compared with complementary searches

SEARCH FOR THE PSEUDOSCALAR A BOSON - M. BAUCE - LAKE TAHOE, 23-29/08/2015

B 744 (2015) 163-183

arXiv:1507.05930

$A \rightarrow Zh \text{ and } A \rightarrow \tau \tau, m_A = 300 \text{ GeV}$

• Here shown a "quick-and-dirty" overlay of the exclusion plot in the tan β vs $\cos (\beta - \alpha)$ space of $A \rightarrow Zh$ and $A \rightarrow \tau \tau$ searches, assuming m_A =300 GeV, and the one obatined by indirect constraints produced measuring *h* couplings, for 2HDM Type II models

2HDMs with $m_A \approx 300$ GeV are significantly constrained

744 (2015) 163-183

- ATLAS is carrying out BSM Higgs searches to explore all possible models, **pseudoscalar** A searches presented here:
 - $A \to \tau \tau$
 - $A \rightarrow Zh\ell\ell\tau\tau, \ell\ell b\overline{b}, \nu\nu b\overline{b}$
- No BSM physics discovery, but Run II just started:
 - Iooking forward for upcoming data!
- $\bullet~8~\text{TeV} \rightarrow 13~\text{TeV}:$ high priority to model independent resonance searches for early Run-2
- Early BSM searches similar to Run I, will be interesting already with very few fb⁻¹

Thanks!

