mass scaling	MCHM	additional EW singlet	2HDMs	hMSSM	invisible	portal model
0	00	00	000	00	00	0

Constraints on new phenomena through Higgs coupling measurements with the ATLAS detector

Lydia Brenner on behalf of the ATLAS collaboration

Nikhef

August 25, 2015

mass scaling	MCHM	additional EW singlet	2HDMs	hMSSM	invisible	portal model
0	00	00	000	00	00	0

references and background information

Update of ATLAS-CONF-2014-010 (Moriond 2014): https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2014-010/ Based on SM Higgs coupling paper

Using 7 and 8 TeV data

Mass measured: $m_H = 125.36 \text{ GeV}$

Global signal strength measured: $\mu = 1.18^{+0/15}_{-0.14}$

Couplings of the Higgs boson to fermions and vector bosons depend on parameters of the BSM theory to be probed

- Measurement of H boson coupling strengths
- $H \rightarrow invisible$

Lydia	Brenner
-------	---------

mass scaling	MCHM	additional EW singlet	2HDMs	hMSSM	invisible	portal model
O	OO	OO	000	OO	00	O
framework						

Narrow width approximation $\sigma x BR(i \rightarrow H \rightarrow f) = \frac{\sigma_X \cdot \Gamma_Y}{\Gamma_H}$

Production	Decay	Width
$\kappa_X^2 = \frac{\sigma_X}{\sigma_X^{SM}}$	$\kappa_Y^2 = \frac{\Gamma_Y}{\Gamma_Y^{SM}}$	$\kappa_H^2 = \frac{\sum \kappa_Y \Gamma_Y^{SM}}{\Gamma_H^{SM}}$
$\mu = \frac{N_{obs}}{N_{exp}} = \frac{\kappa_x^2}{\kappa}$	$\frac{\kappa_Y^2}{\kappa_H^2}$	

・ロト ・回 ト ・ヨト ・ヨト

Production X

Decay Y

• Deviations from SM Higgs parametrised using scaling factors κ (SM: $\kappa=1)$

- Couplings are then re-expressed in terms of BSM parameters in each model
- Fit all κ simultaneously (assume fixed Γ_H)
- Interference in H $\rightarrow \gamma\gamma$, gg \rightarrow H, ... which can cause some sign-ambiguities

mass scaling ●	MCHM OO	additional EW singlet 00	2HDMs 000	hMSSM OO	invisible 00	portal model O
Mass scalir	ıg					
Parameter	ise vector a	nd fermion	SM: $\epsilon =$	0, <i>M</i> = <i>v</i>		
couplings and M (ve	via mass sca ev)	aling deviation ϵ	$\epsilon = 0.01$ $\epsilon = 0.00$	$8 \pm 0.039 (00 \pm 0.042)$	obs) exp)	
$\kappa_{V,j} = V \frac{r}{N}$	$rac{m_{V,j}^{2\epsilon}}{M^{1+2\epsilon}}$, $\kappa_{f,j}=$	$Vrac{m^{\epsilon}_{f,j}}{M^{1+\epsilon}}$	$\begin{array}{l} M=224\\ M=246 \end{array}$			
^Λ μ ^Λ _μ 1 b ^Δ μ ^Λ _μ 1 ^Δ μ ^Δ _μ 10 ⁻¹ 10 ⁻²	ATLAS √s = 7 TeV, 4.5- √s = 8 TeV, 20.3 — Observed SM Expecte	4.7 fb ¹ Z.T fb ¹ W ed	280 280 240 220	ATL4 (15 = 7 (15 = 8	IS Preliminary T TeV, 4.5-4.7 fb ⁻¹ 3 TeV, 20.3 fb ⁻¹ → Best fit → Obs. 95% (→ SW (→ Exp. 68% (→ Exp. 95% (λ.
10 ⁻³	μ		200		/	
	10 ⁻¹ 1	10 10 ²	0		. 0.2 0.0	er der
Lydia Brenner		Particle mass [GeV]				4

mass scaling	MCHM	additional EW singlet	2HDMs	hMSSM	invisible	portal model
0	•0	00	000	00	00	0

Higgs boson compositeness

- Higgs as a composite, pseudo Nambu-Goldstone boson could resolve hierarchy problem
- Modifications to tree-level couplings as a function of compositeness scale f in different minimal composite Higgs models
- $\xi = v^2/f^2$ where f is the Higgs compositeness scale
- SM: $\xi \rightarrow 0, f \rightarrow \inf$

mass scaling	MCHM	additional EW singlet	2HDMs	hMSSM	invisible	portal model
0	0●	00	000	00	00	0

Minimal Composite Higgs Model (MCHM)

0

ξ

mass scaling	MCHM	additional EW singlet	2HDMs	hMSSM	invisible	portal model
0	00	•0	000	00	00	0
Additional	l alactrow	alk cinglet				
Auditiona	electrowe	ak singlet				

- Simplest extension of the SM Higgs sector: heavy, real singlet
- Spontaneous symmetry breaking: two CP-even Higgs bosons

Light Higgs *h*
• SM decay modes
•
$$\mu_h = \frac{\sigma_h \times BR_h}{(\sigma_h \times BR_h)_{SM}} = \kappa^2$$

• $\mu_H = \frac{\sigma_H \times BR_H}{(\sigma_H \times BR_H)_{SM}} = \kappa^{\prime 2}$
• $\mu_H = \frac{\sigma_H \times BR_H}{(\sigma_H \times BR_H)_{SM}} = \kappa^{\prime 2}(1 - BR_{H,new})$

Coupling of Higgs to SM particles for h and H proportional to SM couplings, but reduced by κ and κ' , implying $\kappa^2+\kappa'^2=1$

Indirect constraint on heavy Higgs boson coupling from signal strength of light boson: $\kappa'^2 = 1-\mu_h$

mass scaling	MCHM	additional EW singlet	2HDMs	hMSSM	invisible	portal model
0	00	0•	000	00	00	0

Additional electroweak singlet

Light Higgs signal strength (ignoring boundary): $\mu_h = 1.18 \pm 1.15$

Coupling	Observed	Expected
κ'^2	< 0.12	< 0.23

æ

mass scaling	MCHM	additional EW singlet	2HDMs	hMSSM	invisible	portal model
0	00	00	000	00	00	0
T . 11.						
I WO HIggs	s doublet	models				

- Additional EW doublet
- Five Higgs bosons: two CP-even bosons h and H,one neutral CP-odd boson A, two charged bosons H^{\pm}
- Discovered particle is the light CP-even neutral Higgs boson h
- Described by six parameters: the four masses, the ratio of the vacuum expectation values $(tan\beta = \frac{v_1}{v_2})$ and the mixing angle α of the two neutral, CP-even Higgs states.
- Gauge invariance fixes couplings of the two neutral, CP-even Higgs bosons to vector bosons: $\frac{g_{hVV}^{2HDM}}{g_{hVV}^{SM}} = sin(\beta \alpha), \frac{g_{HVM}^{2HDM}}{g_{HVV}^{SM}} = cos(\beta \alpha)$
- Four 2HDM types

Coupling	Туре І	Type II	Lepton specific	Flipped
κ _u	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$
κ_d	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$	$\cos \alpha / \sin \beta$	$-\sin\alpha/\cos\beta$
κ_{ℓ}	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$	$-\sin \alpha / \cos \beta$	$\cos \alpha / \sin \beta$

mass scaling	MCHM	additional EW singlet	2HDMs	hMSSM	invisible	portal model
0	00	00	000	00	00	0

2HDM: Type I and II

• Data prefers SM alignment limit at $cos(\beta - \alpha) = 0$ Inverted sign of the coupling to down-type fermions causes wing. THDM-I THDM-II

10 0 0

mass scaling	MCHM	additional EW singlet	2HDMs	hMSSM	invisible	portal model
0	00	00	000	00	00	0

2HDM: Lepton-specific and Flipped

• Data prefers SM alignment limit at $cos(\beta - \alpha) = 0$ Inverted sign of the coupling to leptons or bottom quarks causes wings. Lepton-specific Flipped

mass scaling	MCHM	additional EW singlet	2HDMs	hMSSM	invisible	portal model
O	OO	00	000	●O	00	O
Simplified	MSSM					

• Supersymmetry provides a natural solution to the hierarchy problem and Dark Matter

The made assumptions are:

- Simplified means the same decay modes as for the SM Higgs boson
 - No Higgs boson decays to supersymmetric particles, heavy Higgs boson decays to lighter ones
- Neglecting loop corrections from stops in gluon fusion production and di-photon decays
- Assume universality of the down-type fermion couplings: $\kappa_b = \kappa_{ au}$
- Measured Higgs mass used to express couplings (k_V, k_u, k_d) in terms of m_A and tanβ: κ_b = κ_τ = κ_µ

mass scaling	MCHM	additional EW singlet	2HDMs	hMSSM	invisible	portal model
0	00	00	000	00	00	0
Simplified	MSSM					

Indirect limit from Higgs couplings only:

- For $1 < tan\beta < 50, m_A > 370$ GeV (290 GeV) at 95% CL
- hMSSM not valid below $tan\beta < 1$

Overlay of direct and indirect limits

$$\kappa_{v} = \frac{s_{d}(m_{A}, \tan\beta) + \tan\beta s_{u}(m_{A}, \tan\beta)}{\sqrt{1 + \tan^{2}\beta}}$$
$$\kappa_{u} = s_{u}(m_{A}, \tan\beta) \frac{\sqrt{1 + \tan^{2}\beta}}{\tan\beta}$$
$$\kappa_{d} = s_{d}(m_{A}, \tan\beta) \sqrt{1 + \tan^{2}\beta}$$

mass scaling	MCHM	additional EW singlet	2HDMs	hMSSM	invisible	portal model
0	00	00	000	00	•0	0
1.0						

Higgs to invisible

Direct searches via Missing E_T :

- VBF, h \rightarrow inv. ATLAS-CONF-2015-004
- Z(II)h(inv) PRL 112, 201802 (2014)
- V(jj)h(inv) arXiv:1504.04324

Limits set on BR(h \rightarrow inv)

	Observed	-2σ	-1σ	Expected	$+1\sigma$	$+2\sigma$
VBF h	0.28	0.17	0.23	0.31	0.44	0.60
Z(→II)h	0.75	0.33	0.45	0.62	0.86	1.19
Z(́→jj)́h	0.78	0.46	0.62	0.86	1.19	1.60
Combined Results	0.25	0.14	0.19	0.27	0.37	0.50

Lydia Brenner

mass scaling	MCHM	additional EW singlet	2HDMs	hMSSM	invisible	portal model
0	00	00	000	00	00	0
Continut		and the failure				

Combination visible and invisible

- Direct searches assume $\kappa_i = 1$
- Coupling assumes κ_v and κ_F

mass scaling	MCHM	additional EW singlet	2HDMs	hMSSM	invisible	portal model
O	OO	00	000	OO	00	●
Higgs porta	al model					

- Higgs portal model includes dark matter WIMP coupling to Higgs boson
- Set limit on BR_{inv} which are translated to the WIMP nucleon scattering cross-section
- Spin dependent; scalar, majorana or vector.

In Higgs Portal model, ATLAS limits are stringent for light ($m_\chi < m_{h/2}$) WIMPs

mass scaling	MCHM	additional EW singlet	2HDMs	hMSSM	invisible	portal model
0	00	00	000	00	00	0

Summary and outlook

- Run-1 measurement of ATLAS of Higgs coupling strengths and indirect searches for invisible Higgs decays result in picture consistent with the SM Higgs boson within the present uncertainties.
- Interpretation of these measurements in various BSM models results in constraints on various BSM model parameters.
- Enhanced Higgs production in Run-2 and beyond will significantly improve these Higgs property measurements in the next years, that will result in more stringent limits on BSM physics.

Prospects are:

mass scaling	MCHM	additional EW singlet	2HDMs	hMSSM	invisible	portal model
0	00	00	000	00	00	0

Summary and outlook

cos(B-a)

cos(B-a)

18

cos(B-a)

Lydia Brenner cos(β-α)

mass scaling	MCHM	additional EW singlet	2HDMs	hMSSM	invisible	portal model
O	OO	00	000	OO	00	O
backup						

mass scaling	MCHM	additional EW singlet	2HDMs	hMSSM	invisible	portal model
O	OO	00	000	OO	00	O
backup						

Main differences with respect to Moriond 2014 CONF are

- Tree-level interference of single top associated production th
- Theoretical uncertainties updated to reflect latest LHXSWG recommendations
- Correlations of BR uncertainties couplings so neglected
 - Important only for HL-LHC where uncertainties much smaller, particularly on vector boson couplings

