Vector Dark Matter Via Higgs Portal

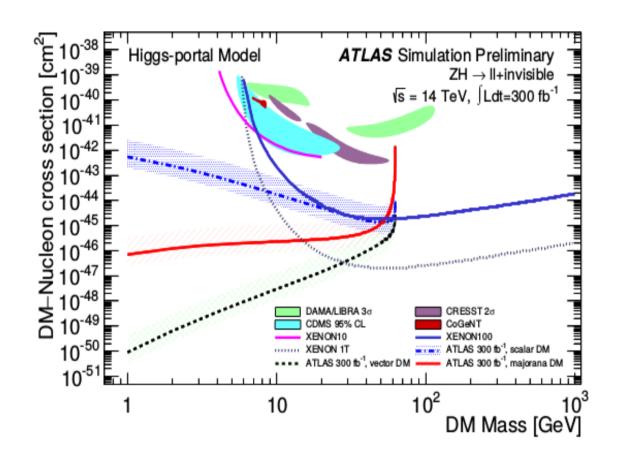
Anthony DiFranzo UC Irvine/Fermilab

arXiv:1509:XXXXX

In collaboration with: Paddy Fox and Tim M.P. Tait

Vector DM Higgs Portal

$$\mathcal{L} \supset \lambda_{hVV} H^{\dagger} H V^{\mu} V_{\mu}$$


- dim-4, but not renormalizable and not gauge invariant. Should be treated as an EFT.
- Observables have unphysical behavior

$$\sigma_{V-N}^{SI} = \frac{\lambda_{hVV}^2}{16\pi m_h^4} \frac{m_N^4 f_N^2}{(M_V + m_N)^2}$$

$$\Gamma_{h\to VV}^{\text{inv}} = \frac{\lambda_{hVV}^2 v^2 m_h^3 \beta_V}{256\pi M_V^4} \left(1 - 4 \frac{M_V^2}{m_h^2} + 12 \frac{M_V^4}{m_h^4} \right)$$

Djoudi et.al. [arXiv: 1112.3299]

Higgs width in direct detection plane

taking ATLAS 14TeV 300fb-1 90%CL sensitivity: BR(h->inv) < 0.19

ATLAS Collaboration [arXiv: 1402.3244]

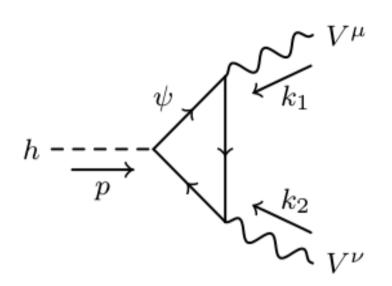
See also:

CMS Collaboration [arXiv: 1404.1344]

UV-complete constructions

- 1) Charge Higgs under dark gauge group
- 2) Introduce new scalar which mixes with Higgs

$$D^{\mu}\Phi^{\dagger}D_{\mu}\Phi, H^{\dagger}H\Phi^{\dagger}\Phi \to \sin\theta \ hV^{\mu}V_{\mu}$$


hVV coupling related to V mass, giving expected behavior in observables

e.g. Baek et.al. [arXiv:1212.2131], Farzan et.al. [arXiv:1207:4272], Hambye [arXiv:0811.0172]

3) Radiatively generated

A Toy Model

$$\mathcal{L}_{loop} = -\frac{1}{4}AhV^{\mu\nu}V_{\mu\nu} - \frac{1}{2}BhV^{\mu}V_{\mu}$$

$$A, B \sim \frac{y_{\psi}}{m_{\psi}} \neq \frac{1}{v}$$

- Imagine integrating out a heavy fermion
- Similar to hGG/hFF, except:
 - Vector is massive, resulting in term 'B'
 - Yukawa not simply related to fermion mass

UV completion: Requirements

- 1) Anomaly free
- 2) Ensure stability of DM candidate (e.g. prevent kinetic mixing with SM gauge groups)
- 3) visible Higgs width is unaffected (e.g. gluons/photons)

UV Completion: Matter content

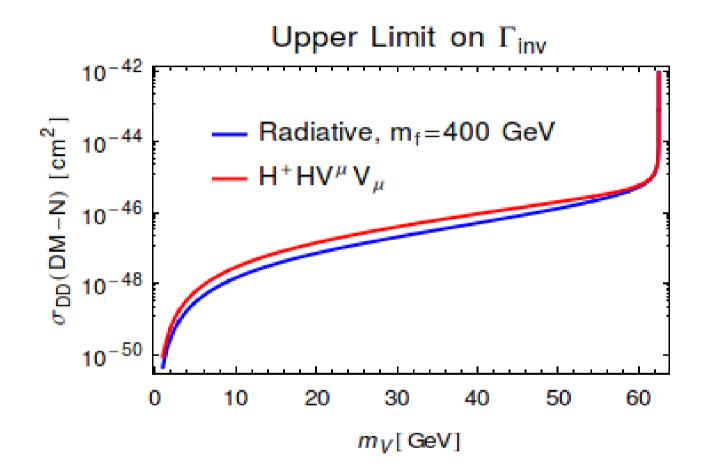
	(SU(2), U(1), U(1)')		(SU(2), U(1), U(1)')
$\psi_{1\alpha}$	(2, 1/2, Q)	ψ_{2lpha}	(2, 1/2, -Q)
$\chi_{1\alpha}$	(2, -1/2, -Q)	$\chi_{2\alpha}$	(2, -1/2, Q)
$n_{1\alpha}$	(1, 0, -Q)	$n_{2\alpha}$	(1, 0, Q)
Φ	(1, 0, NQ)		

$$-\mathcal{L}_{int} = m(\epsilon^{ab}\psi_{1a}\chi_{1b} + \epsilon^{ab}\psi_{2a}\chi_{2b}) + m_n n_1 n_2 + y_{\psi}(\epsilon^{ab}\psi_{1a}H_b n_1 + \epsilon^{ab}\psi_{2a}H_b n_2) + y_{\chi}(\chi_1 H^* n_1 + \chi_2 H^* n_2) + h.c.$$

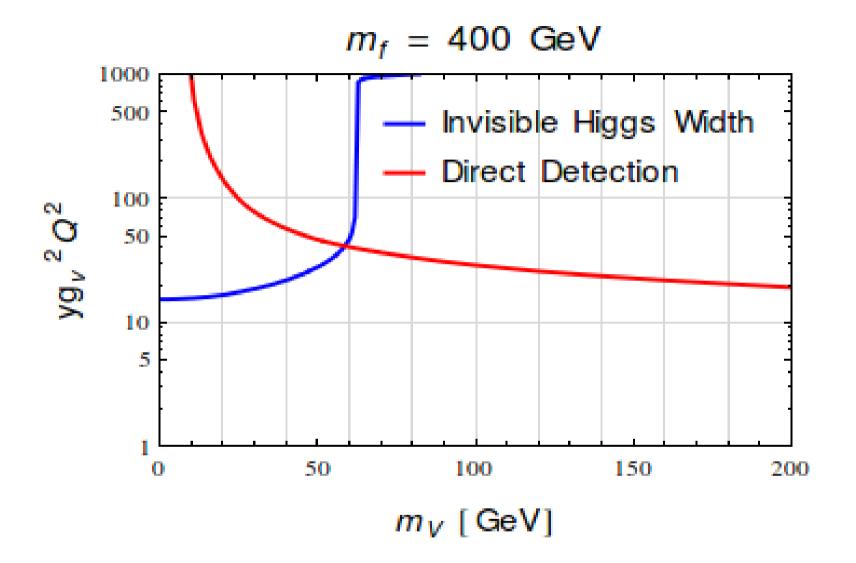
- 1) Anomalies are canceled within these pairs
- 2) U(1)' charge conjugation symmetry protects kinetic mixing
- 3) Higgs doesn't interact with new charged fermions

Purpose of Scalar

	(SU(2), U(1), U(1)')		(SU(2), U(1), U(1)')
$\psi_{1\alpha}$	(2, 1/2, Q)	$\psi_{2\alpha}$	(2, 1/2, -Q)
$\chi_{1\alpha}$	(2, -1/2, -Q)	$\chi_{2\alpha}$	(2, -1/2, Q)
$n_{1\alpha}$	(1, 0, -Q)	$n_{2\alpha}$	(1, 0, Q)
Φ	(1, 0, NQ)		

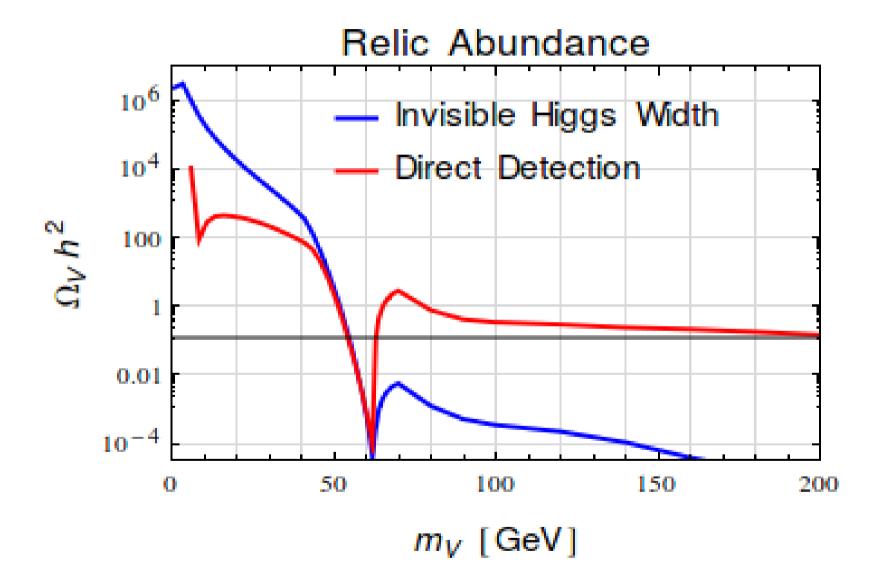

- Solely to break U(1)'
- But could also:
 - Cause new fermions to mix with SM leptons (N=±1)
 - Contribute to mixing between new fermions (N=±2)
 - Mix with Higgs $\lambda H^\dagger H \Phi^\dagger \Phi$

Observables from Toy Model


$$\Gamma(h \to VV) = \frac{\sqrt{1 - 4m_V^2/m_h^2}}{64\pi m_h} \left[|A|^2 m_h^4 \left(1 - 4\frac{m_V^2}{m_h^2} + 6\frac{m_V^4}{m_h^4} \right) + 3(A^*B + AB^*) m_h^2 \left(1 - 2\frac{m_V^2}{m_h^2} \right) + \frac{1}{2} |B|^2 \frac{m_h^4}{m_V^4} \left(1 - 4\frac{m_V^2}{m_h^2} + 12\frac{m_V^4}{m_h^4} \right) \right]$$
 for small m_V, $|B| \sim m_V^4$

$$\sigma(VN \to VN) = \frac{1}{4\pi m_h^4} \left(\frac{f_n}{v}\right)^2 \left(\frac{m_N^2}{m_N + m_V}\right)^2 |B - Am_V^2|^2$$
for $m_V \to 0$: $|B| \to 0$, $|A| \to \text{constant}$

Two wrongs DO make a right


(taking ATLAS 14TeV 300fb-1 90%CL sensitivity: BR(h->inv) < 0.19) ATLAS Collaboration arXiv:1402.3244

-Invisible Higgs width: VBF Higgs (CMS Collaboration [arXiv:1404.1344]) including off-shell Higgs contributions (Endo et.al. [arXiv:1407.6882]) -Direct Detection: LUX Collaboration [arXiv:1310.8214]

DiFranzo – UCI SUSY15

11

Necessity of Full Matter Content

- If the two heavier states are not much heavier than the first
- Description of all box diagrams, which allow other annihilation channels for large DM mass as well as photon lines

Summary

- Higgs portal should be treated as EFT
- Viable UV completions are easily constructed for the Vector DM portal
- Relic abundance is difficult to get with the radiative portal. Though including mixing and other loop level processes can help.

Thanks! Questions?