

CP-Violation Measurements at LHCb

Ramon Niet on behalf of the LHCb collaboration

SUSY 2015 Lake Tahoe, California — 24/8/2015

Introduction to CP

What CPV is

- antiparticles
- necessary ingredient to explain observed baryon asymmetry
- Why CPV is studied
 - CPV in SM not sufficient
 - expect contributions from Physics Beyond the Standard Model
- How CPV is studied
 - SM: complex phase of CKM matrix
 - measure phases in interfering amplitudes
 - over-constrain CKM parameters and look for contradictions

 $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0 + V_{cd}V_{cd}^*$

Measurements of mixing induced CPV

- need final state both B flavours can decay to
- interference of direct decay and decay after mixing

Measurements of mixing induced CPV

- need final state both B flavours can decay to
- interference of direct decay and decay after mixing
- partial decay widths are sensitive to $\phi_q = \phi_{mix} 2 \phi_{dec}$
- decay-time dependent CP asymmetry:

$$egin{array}{ccc} B_q^0 & \phi_{
m dec} \ \phi_{
m mix} & f_{CP} \ \overline{B}_q^0 & -\phi_{
m dec} \end{array}$$

$$a_{CP}(t) \equiv \frac{\Gamma(\overline{B}(t) \to f) - \Gamma(B(t) \to f)}{\Gamma(\overline{B}(t) \to f) + \Gamma(B(t) \to f)} = \frac{S\sin(\Delta m t) - C\cos(\Delta m t)}{\cosh(\Delta\Gamma t/2) + \mathcal{A}_{\Delta\Gamma}\sinh(\Delta\Gamma t/2)}$$

• CP observables S, C, $A_{\Delta\Gamma}$ mixing parameters Δm , $\Delta\Gamma$

Measurements of mixing induced CPV

- need final state both B flavours can decay to
- interference of direct decay and decay after mixing
- partial decay widths are sensitive to $\phi_q = \phi_{mix} 2 \phi_{dec}$
- decay-time dependent CP asymmetry:

$$a_{CP}(t) \equiv \frac{\Gamma(\overline{B}(t) \to f) - \Gamma(B(t) \to f)}{\Gamma(\overline{B}(t) \to f) + \Gamma(B(t) \to f)} = \frac{S\sin(\Delta m t) - C\cos(\Delta m t)}{\cosh(\Delta\Gamma t/2) + \mathcal{A}_{\Delta\Gamma}\sinh(\Delta\Gamma t/2)}$$

 $\sin 2\beta_s = 0.03761^{+0.00073}_{-0.00082}$

probing precise predictions

from other measurements!

- CP observables S, C, $A_{\Delta\Gamma}$ mixing parameters Δm , $\Delta\Gamma$
- golden modes provide direct match to CKM angle
 - $B^0 \rightarrow J/\psi K_S \ (\phi_d = 2\beta)$ $\sin 2\beta = 0.748^{+0.030}_{-0.032}$ CKMFitter EPS2015
 - $B_s \rightarrow J/\psi hh \ (\phi_s = -2\beta_s)$

Asymmetry measurement

- Experimentally determine number of B's with
 - production flavour B
 - decay time of B

$$a_{\text{meas}}(t) = \frac{N_{\bar{B}_{q}^{0}}(t) - N_{B_{q}^{0}}(t)}{N_{\bar{B}_{q}^{0}}(t) + N_{B_{q}^{0}}(t)}$$

Asymmetry measurement

- Experimentally determine number of B's with
 - production flavour B
 - decay time of B
- production flavour inferred from tagging algorithms
 - exploit pair production (OS) hadronization of signal (SS)
 - wrong tag rate ω≈38%
 - tagging power $\varepsilon(1-2\omega)^2 \approx 3\%$

Asymmetry measurement

- Experimentally determine number of B's with
 - production flavour B
 - decay time of B
- production flavour inferred from tagging algorithms
 - exploit pair production (OS) hadronization of signal (SS)
 - wrong tag rate ω≈38%
 - tagging power ε(1-2ω)²≈3%
- decay time from flight distance
 - highly boosted B's are great for this!
 - flight distance O(cm)

Ramon Niet | SUSY 2015 - 24/8/2015

The LHCb experiment

> 20 m long single arm forward spectrometer covering $2 < \eta < 5$

The LHCb experiment

> 20 m long single arm forward spectrometer covering $2 < \eta < 5$

Beauty CPV Measurements

$sin(2\beta)$ with $B^0 \rightarrow J/\psi K_s(3fb^{-1})$

 $Candidates / (1 MeV/c^2)$

- 114000 signal candidates (41560 tagged)
- multi-dimensional unbinned maximum likelihood fit to extract CP observables
- analysis accounts for
 - tagging / production asymmetries

$$S = 0.731 \pm 0.035 \text{ (stat)} \pm 0.020 \text{ (syst)}$$
$$C = -0.038 \pm 0.032 \text{ (stat)} \pm 0.005 \text{ (syst)}$$

PRL 115, 031601 (2015)

$sin(2\beta)$ with $B^0 \rightarrow J/\psi K_s(3fb^{-1})$

 $Candidates / (1 MeV/c^2)$

- 114000 signal candidates (41560 tagged)
- multi-dimensional unbinned maximum likelihood fit to extract CP observables
- analysis accounts for
 - tagging / production asymmetries

$$S = 0.731 \pm 0.035 \text{ (stat)} \pm 0.020 \text{ (syst)}$$
$$C = -0.038 \pm 0.032 \text{ (stat)} \pm 0.005 \text{ (syst)}$$

need handle on penguin pollution:

Ramon Niet | SUSY 2015 - 24/8/2015

13

JHEP 06 (2015) 131

Penguins from $B_s \rightarrow J/\psi K_S$ (3fb⁻¹)

- CKM suppression of tree topology
 - extraction of penguin parameters possible
 - 900 B_s candidates
- use B⁰ component as proxy

Results for the CP coefficients

 $\begin{aligned} \mathcal{A}_{\Delta\Gamma} \left(B_s^0 \to J/\psi \, K_s^0 \right) &= 0.49 \pm {}^{0.77}_{0.65} \, (\text{stat}) \pm 0.06 \, (\text{syst}) \\ C \left(B_s^0 \to J/\psi \, K_s^0 \right) &= -0.28 \pm 0.41 \, (\text{stat}) \pm 0.08 \, (\text{syst}) \\ S \left(B_s^0 \to J/\psi \, K_s^0 \right) &= -0.08 \pm 0.40 \, (\text{stat}) \pm 0.08 \, (\text{syst}) \end{aligned}$

successful proof of concept! but no constraint on penguins yet

Ramon Niet | SUSY 2015 - 24/8/2015

Φ_s measurements (3fb⁻¹)

PRL 114, 041801 (2015)

- Analysis of $B_s \rightarrow J/\psi K^+ K^-$
 - time dependent angular analysis
 - disentangle CP even and CP odd
 - 95690 signal candidates

 $\phi_s = -0.058 \pm 0.049 \pm 0.006 \, \text{rad}$

- no evidence for polarisation-dependent CPV
- Combined result with $B_s \rightarrow J/\psi \pi^+ \pi^- \phi_s = -0.010 \pm 0.039 \text{ rad}$
- Analysis of $B_s \rightarrow D_s^+ D_s^-$

 $\phi_s = 0.02 \pm 0.17 \,(\text{stat}) \pm 0.02 \,(\text{syst}) \,\text{rad}$

PRL 113, 211801 (2014)

Ramon Niet | SUSY 2015 - 24/8/2015

Φ_s measurements (3fb⁻¹)

PRL 114, 041801 (2015)

- Analysis of $B_s \rightarrow J/\psi K^+ K^-$
 - time dependent angular analysis
 - disentangle CP even and CP odd
 - 95690 signal candidates

 $\phi_s = -0.058 \pm 0.049 \pm 0.006 \, \text{rad}$

- no evidence for polarisation-dependent CPV
- Combined result with $B_s \rightarrow J/\psi \pi^+ \pi^- \phi_s = -0.010 \pm 0.039 \text{ rad}$
- Analysis of $B_s \rightarrow D_s^+ D_s^-$

 $\phi_s = 0.02 \pm 0.17 \,(\text{stat}) \pm 0.02 \,(\text{syst}) \,\text{rad}$

PRL 113, 211801 (2014)

LHCB-PAPER-2015-034 in preparation to be submitted to JHEP

Penguins from $B_s \rightarrow J/\psi K^{*0}$ (3fb⁻¹)

LHCB-PAPER-2015-034 in preparation to be submitted to JHEP

Penguins from $B_s \rightarrow J/\psi K^{*0}$ (3fb⁻¹)

▶ result combined with $B^0 \rightarrow J/\psi \rho^0$ [PLB742, 38-49 (2015)]

Preliminary

$$\Delta \phi_{s,0}^{J/\psi\phi} = 0.000^{+0.009}_{-0.011} \text{ (stat)}^{+0.004}_{-0.009} \text{ (syst)}$$
$$\Delta \phi_{s,\parallel}^{J/\psi\phi} = 0.001^{+0.010}_{-0.014} \text{ (stat)}^{+0.007}_{-0.008} \text{ (syst)}$$
$$\Delta \phi_{s,\perp}^{J/\psi\phi} = 0.003^{+0.010}_{-0.014} \text{ (stat)}^{+0.007}_{-0.008} \text{ (syst)}$$

absolute shift on ϕ_s smaller is found smaller than 19 mrad

no need to
worry yet
$$\phi_s = -0.034 \pm 0.033$$
 rad
(World Average) HFAG preliminary

Charm CPV Measurements

Looking for anything ...

Time integrated CPV $D^0 \rightarrow K_S K_S$ Amplitude Analysis of $D^0 \rightarrow K_S K^{\pm} \pi^{\mp}$ LHCB-PAPER-2015-030 in preparation to be submitted to JHEP

Time integrated CPV in $D^0 \rightarrow K_S K_S$

- CPV could be as big as O(1%)
- vertexing two long lived neutrals
- \blacktriangleright tagged by charged π_s from prompt D^*
- ► systematics from $D^0 \rightarrow K^-\pi^+$
 - charged π_s^{\pm} detection asymmetry
 - background model

 $A_{CP} = -0.029 \pm 0.052 \pm 0.022$

No evidence of CPV

not as sensitive as other charm CPV searches yet:

 $\Delta A_{CP} = A_{CP}(K^-K^+) - A_{CP}(\pi^-\pi^+) = (+0.14 \pm 0.16 \text{ (stat)} \pm 0.08 \text{ (syst)})\%$ $A_{CP}(K^-K^+) = (-0.06 \pm 0.15 \text{ (stat)} \pm 0.10 \text{ (syst)})\% \text{ JHEP 07 (2014) 041}$

Entries / (0.33 MeV)

LHCB-PAPER-2015-026 in preparation to be submitted to PRD

Amplitude Analysis of $D^0{\rightarrow}K_SK^{\pm}\pi^{\mp}$

- 190K signal candidates
- final state reached by various resonances

LHCB-PAPER-2015-026 in preparation to be submitted to PRD

Model dependent

CPV search!

Amplitude Analysis of $D^0 \rightarrow K_S K^{\pm} \pi^{\mp}$

- 190K signal candidates
- final state reached by various resonances

Ramon Niet | SUSY 2015 - 24/8/2015

Conclusions

colorful program of beauty & charm CPV analyses at LHCb

(I've shown you only a tiny selection of its freshest)

- if present new physics in CPV searches must be small
- penguin contributions are under control
- no evidence of charm CPV yet
- analyses are mostly statistically limited
 - stay tuned for Run II exciting results to come from LHCb!

Backup

Candidate classification

V Combination

mixture of 3fb⁻¹ and 1fb⁻¹ measurements

$sin(2\beta)$ with $B^0 \rightarrow J/\psi K_s(3fb^{-1})$

systematic uncertainties

Origin	σ_S	σ_C
Background tagging asymmetry	0.0179~(2.5%)	0.0015~(4.5%)
Tagging calibration	0.0062~(0.9%)	0.0024~(7.2%)
$\Delta\Gamma$	0.0047~(0.6%)	
Fraction of wrong PV component	0.0021~(0.3%)	0.0011~(3.3%)
z-scale	0.0012~(0.2%)	0.0023~(7.0%)
Δm		0.0034~(10.3%)
Upper decay time acceptance		0.0012~(3.6%)
Correlation between mass and decay time		
Decay time resolution calibration		
Decay time resolution offset		
Low decay time acceptance		
Production asymmetry		
Sum	0.020~(2.7%)	0.005~(15.2%)

 $\sin(2\beta)_{b\to c\bar{c}s, \text{HFAG}} = 0.691 \pm 0.017(0.016_{\text{stat-only}})$

 $C_{b \to c \bar{c} s, \text{HFAG}} = -0.004 \pm 0.015(0.012_{\text{stat-only}})$

CPV in $B_s \rightarrow J/\psi K_S$

systematic uncertainties

Source	$\mathcal{A}_{\Delta\Gamma}$	$C_{ m dir}$	$S_{\rm mix}$	$\begin{array}{c} \text{Long} \\ R \times 10^5 \end{array}$	$\begin{array}{c} \text{Downstream} \\ R\times 10^5 \end{array}$
Mass modelling	0.045	0.009	0.009	15.5	17.2
Decay-time resolution	0.038	0.066	0.070	0.6	0.3
Decay-time acceptance	0.022	0.004	0.004	0.6	0.5
Tagging calibration	0.002	0.021	0.023	0.1	0.2
Mass resolution	0.010	0.005	0.006	12.6	8.0
Mass–time correlation	0.003	0.037	0.036	0.2	0.1
Total	0.064	0.079	0.083	20.0	19.0

PRL 114, 041801 (2015)

Φ_s with $B_s \rightarrow J/\psi K^+K^-$ (3fb⁻¹)

- tagged time-dependent analysis, but...
- K⁺K⁻ reached dominantly via φ resonance (P-Wave)
 - ▶ P2VV decay CP even (L=0,2) and CP odd (L=1) final state
- takes S-Wave contribution into account
 - analysis is performed in bins of $m(K^+K^-)$
- angular analysis to statistically disentangle
- also studies polarization dependence of CPV
- ▶ ≈ 96000 signal candidates

Candidates / (1.0 MeV/c²

 10^{3}

LHCb

(a)

(b)

 (2.5 MeV/c^2)

Candidates /

10000

5000

LHCb

Definition of direct CP asymmetry:

$$A_{CP}^{i}(B_{(s)}^{0} \to f_{(s)}) = \frac{\Gamma(\overline{B}_{(s)}^{0} \to \overline{f}_{(s),i}) - \Gamma(B_{(s)}^{0} \to f_{(s),i})}{\Gamma(\overline{B}_{(s)}^{0} \to \overline{f}_{(s),i}) + \Gamma(B_{(s)}^{0} \to f_{(s),i})}$$

LHCB-PAPER-2015-034 in preparation to be submitted to JHEP

$B_s \rightarrow J/\psi K^{*0}$ systematics (P-Wave)

	f_0	f_{\parallel}	δ_{\parallel}	δ_{\perp}	A_0^{CP}	A_{\parallel}^{CP}	A_{\perp}^{CP}
Fitted value	0.497	0.179	-2.70	0.01	-0.048	0.171	-0.049
Statistical uncertainties	$+0.024 \\ -0.025$	$^{+0.027}_{-0.026}$	$^{+0.15}_{-0.16}$	0.11	0.057	0.152	$+0.095 \\ -0.096$
Angular acceptance (MC stat)	0.018	0.008	0.02	0.01	0.009	0.017	0.008
Angular acceptance (data–MC corrections)	0.015	0.007	0.17	0.10	0.007		0.015
C_{SP} factors		0.001			0.001	0.002	0.002
D-wave contribution	0.004	0.003			0.002	0.015	0.002
Background angular model	$+0.004 \\ -0.003$	0.002	0.02	0.01	$+0.003 \\ -0.004$	$+0.012 \\ -0.004$	0.002
Mass parameters and B^0 contamination					0.001	0.001	
$Mass-cos(\theta_{\mu})$ correlations	0.007	0.006	0.07	$+0.02 \\ -0.04$	0.014	$+0.009 \\ -0.012$	0.016
Fit bias			0.01	0.12	0.003	0.003	0.005
Detection asymmetry					0.005	0.005	$+0.005 \\ -0.006$
Production asymmetry	_	—	_			—	
Quadratic sum of systematics	0.025	0.013	0.19	0.16	$+0.019 \\ -0.020$	$+0.028 \\ -0.027$	0.025
Total uncertainties	0.035	$^{+0.030}_{-0.029}$	$+0.24 \\ -0.25$	0.20	$+0.063 \\ -0.062$	0.163	$+0.098 \\ -0.099$

Ramon Niet | SUSY 2015 - 24/8/2015

$B_s \rightarrow J/\psi K^{*0}$ systematics (S-Wave)

	лCP	$m_{K\pi}^{\rm bin0}$		$m_{K\pi}^{\rm bin1}$		$m_{K\pi}^{\mathrm{bin2}}$		$m_{K\pi}^{\rm bin3}$	
	A_S	F_S	δ_S	F_S	δ_S	F_S	δ_S	F_S	δ_S
Fitted value	0.167	0.475	0.54	0.080	-0.53	0.044	-1.46	0.523	-1.76
Statistical uncertainties	$+0.113 \\ -0.114$	$^{+0.108}_{-0.112}$	0.16	$^{+0.031}_{-0.025}$	$^{+0.25}_{-0.21}$	$+0.042 \\ -0.029$	$^{+0.22}_{-0.19}$	$+0.109 \\ -0.112$	$^{+0.13}_{-0.14}$
Angular acceptance (MC stat)	0.028	0.039	0.03	0.012	0.065	0.015	0.10	0.065	0.06
Angular acceptance (data–MC corrections)	0.015	0.058	0.08	0.019	0.18	0.027	0.27	0.006	0.04
C_{SP} factors		0.002	0.01	0.001		0.002		0.001	0.01
D-wave contribution	0.008	0.010	0.02	0.005	0.03	0.008	0.08	0.002	0.04
Background angular model	0.001	0.002	0.01	$^{+0.000}_{-0.001}$	0.01		$^{+0.03}_{-0.02}$	$+0.002 \\ -0.000$	$^{+0.07}_{-0.04}$
Mass parameters and B^0 contamination	0.001	0.001	$^{+0.00}_{-0.01}$				—		—
$\begin{array}{l}\text{Mass-}\cos(\theta_{\mu})\\\text{correlations}\end{array}$	$+0.023 \\ -0.029$	$^{+0.040}_{-0.028}$	0.05	0.003	0.04	$+0.006 \\ -0.016$	0.02	$^{+0.009}_{-0.011}$	$^{+0.02}_{-0.03}$
Fit bias	0.001	0.005	0.01	0.001	0.01	0.004	0.03	0.013	
Detection asymmetry	0.005								
Production asymmetry									
Quadratic sum of systematics	$^{+0.040}_{-0.044}$	$^{+0.081}_{-0.076}$.10	0.023	0.20	$+0.033 \\ -0.036$	0.30	0.067	$^{+0.10}_{-0.09}$
Total uncertainties	$+0.120 \\ -0.122$	0.135	0.19	$^{+0.038}_{-0.031}$	$^{+0.32}_{-0.29}$	$+0.053 \\ -0.046$	$^{+0.36}_{-0.35}$	$+0.128 \\ -0.131$	0.17

Ramon Niet | SUSY 2015 - 24/8/2015

LHCB-PAPER-2015-034 in preparation to be submitted to JHEP

Penguins from $B_s \rightarrow J/\psi K^{*0}$

Relation between amplitudes:

$$\begin{split} A\left(B_{s}^{0} \rightarrow (J/\psi \,\overline{K}^{*0})_{i}\right) &= -\lambda \mathcal{A}_{i} \left[1 - a_{i}e^{i\theta_{i}}e^{i\gamma}\right] \\ A\left(B_{s}^{0} \rightarrow (J/\psi \,\phi)_{i}\right) &= \left(1 - \frac{\lambda^{2}}{2}\right) \mathcal{A}_{i}' \left[1 + \epsilon a_{i}'e^{i\theta_{i}'}e^{i\gamma}\right] \\ a_{i}' &= a_{i} \qquad \theta_{i}' = \theta_{i} \quad \text{SU(3) Flavour Symmetry} \end{split}$$

Observables for extraction:

$$\begin{split} H_i &\equiv \frac{1}{\epsilon} \left| \frac{\mathcal{A}'_i}{\mathcal{A}_i} \right|^2 \frac{\Phi(m_{J/\psi}/m_{B_s^0}, m_{\phi}/m_{B_s^0})}{\Phi(m_{J/\psi}/m_{B_s^0}, m_{\overline{K}^{*0}}/m_{B_s^0})} \frac{\mathcal{B}(B_s^0 \to J/\psi \, \overline{K}^{*0})_{\text{theo}}}{\mathcal{B}(B_s^0 \to J/\psi \, \phi)_{\text{theo}}} \frac{f_i}{f_i'} ,\\ &= \frac{1 - 2a_i \cos \theta_i \cos \gamma + a_i^2}{1 + 2\epsilon a_i' \cos \theta_i' \cos \gamma + \epsilon^2 a_i'^2} ,\\ \mathcal{A}_i^{CP} &= -\frac{2a_i \sin \theta_i \sin \gamma}{1 - 2a_i \cos \theta_i \cos \gamma + a_i^2} \\ &\tan(\Delta \phi_{s,i}^{J/\psi \phi}) = \frac{2\epsilon a_i' \cos \theta_i' \sin \gamma + \epsilon^2 a_i'^2 \sin(2\gamma)}{1 + 2\epsilon a_i' \cos \theta_i' \cos \gamma + \epsilon^2 a_i'^2 \cos(2\gamma)} \end{split}$$

LHCB-PAPER-2015-034 in preparation to be submitted to JHEP

Penguins from $B_s \rightarrow J/\psi K^{*0}$

• Observables in $B^0 \rightarrow J/\psi \rho^0$ that relate to penguin parameters:

$$C_{i} = \frac{2 a_{i} \sin \theta_{i} \sin \gamma}{1 - 2 a_{i} \cos \theta_{i} \cos \gamma + a_{i}^{2}},$$

$$S_{i} = -\eta_{i} \left[\frac{\sin \phi_{d} - 2 a_{i} \cos \theta_{i} \sin(\phi_{d} + \gamma) + a_{i}^{2} \sin(\phi_{d} + 2\gamma)}{1 - 2 a_{i} \cos \theta_{i} \cos \gamma + a_{i}^{2}} \right]$$

CPV Measurements Charm at LHCb

- O(5 x 10¹²) cc pairs produced during 2011-2012 in LHCb
 - Worlds best sensitivity to many Charm CPV observables
 - Highly boosted D mesons great for time-dependent studies
- At LHCb two methods to tag charm
 - semi-leptonic B decays

LHCB-PAPER-2015-030 in preparation to be submitted to JHEP

Time integrated CPV in $D^0 \rightarrow K_S K_S$

- 3 different track categories (LL, DD, LD)
- dedicated trigger line during 2012 running period
- systematics assessed from $D^0 \rightarrow K^-\pi^+$
 - charged pion detection asymmetry
 - background model

LHCB-PAPER-2015-026 in preparation to be submitted to PRD

Amplitude Analysis of $D^0 \rightarrow K_S K^{\pm} \pi^{\mp}$

Destructive Interference of K_Sπ S-Wave

 $A \approx 0.82 \quad \lambda \approx 0.22 \quad \rho \approx 0.13$ $\eta \approx 0.26$

$$\beta = \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right) \quad \beta_s = \arg\left(-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right)$$