Search for compressed SUSY in hadronic final states with the CMS detector

Arne-Rasmus Dräger on behalf of the CMS collaboration (Uni Hamburg)

August 28, 2015 23rd International Conference on Supersymmetry & Unification of Fundamental Interactions, Lake Tahoe (US)

Arne-Rasmus Dräger (adraeger@cern.ch)

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Motivation

Supersymmetry: An Elegant Extension of the SM

• SUSY:

- Can provide dark matter candidate
- Solving hierarchy problem by canceling large SM mass contributions to Higgs mass
 - * Mainly driven by third generation contribution \rightarrow **light** \tilde{t} , \tilde{b}
- and more...
- Light SUSY partners at TeV scale favored

Difficulty: Exact SUSY realization unknown Look for variety of final states!

SUSY Search Strategies

- Various generic searches (traditional):
 - Final states: Jets + MET, leptons, photons
- If initially produced particles close in mass to $LSP(\tilde{\chi}^0) \rightarrow Compressed Spectra:$
 - Small amount of visible energy in final state → small p_T, H_T, MET
 - Hard to distinguish between SM processes and SUSY signal events! ("hidden SUSY")

SUSY Searches

Light Stop Searches

Compressed SUSY Search Strategy

- Soft final state \rightarrow classical high $H_{\rm T}$, MET etc. searches not sensitive
- Focus not on SUSY decay products but on associated produced particles

 \rightarrow initial state radiation (ISR) boosting decay products!

• Final state: High p_T Jet (ISR) + MET (LSP)

CMS Search for: ${ ilde t} o c { ilde \chi}^0$ and ${ ilde b} o b { ilde \chi}^0$

"Searches for third-generation squark production in fully hadronic final states in proton-proton collisions at $\sqrt{s}=8$ TeV"

Published: JHEP06(2015)116 (Jun 17, 2015) Combination of three analysis including Monojet Search

- Analyzing 19.7 fb⁻¹ of $\sqrt{s} = 8$ TeV for $\tilde{t} \& \tilde{b}$ pair production, assuming 100% branching fraction to $c\tilde{\chi}^0$ or $b\tilde{\chi}^0$ interpreted in the context of simplified models
- Note this is an optimization of "arXiv:1408.3583 (2014): Search for dark matter, extra dimensions, and unparticles in monojet events in proton-proton collisions at $\sqrt{s} = 8$ TeV"
 - Increased threshold on N_{jets}
 - Define search regions: Highest jet p_{T} , not p_{T}^{miss}

Event Selection

- Trigger 1: $p_{\rm T}^{miss} > 120 \text{ GeV}$
- Trigger 2: $p_T^{j1} > 80 \text{ GeV } \& p_T^{miss} > 105 \text{ GeV}$
- $N_{
 m jets} \leq$ 2, jets: $p_{
 m T} >$ 60 GeV, $|\eta| <$ 4.5
- Veto: Iso e, μ, τ , $\Delta \phi(\vec{p}_T^{j1}, \vec{p}_T^{j2}) > 2.5$ (Selecting invisible final state: Veto soft jets while reject QCD dijet events)

Search regions: $p_{\rm T}^{j1} > 250, 300, 350, 400, 450, 500, 550 \text{ GeV}$

SM Background Estimation Strategy

• Prominent background processes:

 ${\sf Z}
ightarrow
u ar{
u}$ + jets (irreducible, largest) & W ightarrow I
u + jets (lost-lepton)

• Data driven estimation: Select control-sample (N^{obs}) of di-muon events (Z $\rightarrow \nu \bar{\nu} + jets$), single-muon events (W + jets) in data

• Data-driven prediction (N):

•
$$N(Z \rightarrow \nu \bar{\nu} + jets) = \frac{N^{obs-N^{bkg}}}{A \cdot \epsilon} \cdot R$$

•
$$N(W \rightarrow l\nu + jets) = \frac{N^{obs-N^{bkj}}}{A' \cdot \epsilon'}$$

 with N^{bkg} non Z(νν) or non W(μν), acceptance (A, A'), efficiencies ε, ε' & R ratio of BR

Combined SM Backgrounds (from MC)

- \bullet Comparison of observed events in data to SM bkg distributions (MC) normalized to 19.7 $\rm fb^{-1}$
- No excess visible

Uncertainties

- $Z \rightarrow \nu \bar{\nu} + jets$ estimation (5-19%):
 - $\blacktriangleright\,$ 2-17% statistical uncertainty of Z $\rightarrow \mu \bar{\mu}$ + jets events (data, MC)
 - 50% on non-Z bkg contribution (MC)
 - 2% PDF
 - 2% hadronization
 - ▶ 2% on R
- W \rightarrow $l\nu$ + jets estimation (5.7-12.0%):
 - ▶ 1-8.6% statistical uncertainty of W $\rightarrow \mu \nu$ + jets events (data, MC)
 - 50% on non-W bkg contribution (MC)
 - ▶ 4.5-7.1% stat. & syst. (PDF) on acceptance & ϵ'
- QCD method: MC normalized to data in control region $\Delta \phi(\vec{p}_T^{j2}, \vec{p}_T^{miss}) < 0.3$, uncertainty $\sim 60\%$ (stat. & syst.)
- tī, single t, di-boson & Z \rightarrow II taken from simulation, uncertainty 50% (stat. & syst.)

Result: Table

Comparison of data-driven predictions Z $\rightarrow \nu\bar{\nu}$ + jets, W $\rightarrow \mu\nu$ + jets and other SM bkg predictions using MC validated in data to observed events in 19.7 fb $^{-1}$ data

$p_{\rm T}^{j1}$ [GeV]	> 250	> 300	> 350	> 400	> 450	> 500	> 550
$Z \rightarrow \nu \bar{\nu}$	21200 ± 1116	10100 ± 592	4600 ± 325	2250 ± 197	12500 ± 137	663 ± 94	334 ± 65
$W \rightarrow \mu \nu$	12300 ± 707	5940 ± 366	2690 ± 180	1250 ± 93	637 ± 53	301 ± 29	150 ± 18
tī	602 ± 300	344 ± 170	176 ± 89	91 ± 46	48 ± 24	27 ± 14	18 ± 9
$Z \rightarrow II$	127 ± 64	75 ± 38	40 ± 20	25 ± 13	17 ± 8	11 ± 6	7 ± 4
single t	172 ± 86	97 ± 49	49 ± 24	21 ± 10	11 ± 6	5 ± 3	3 ± 2
QCD	786 ± 470	508 ± 310	304 ± 180	162 ± 99	80 ± 49	52 ± 32	28 ± 18
Diboson	639 ± 320	369 ± 180	206 ± 100	113 ± 56	64 ± 32	36 ± 18	21 ± 10
Total SM	35900 ± 1500	17400 ± 800	8060 ± 440	3910 ± 250	2100 ± 160	1100 ± 110	563 ± 71
Data	36600	17600	8120	3900	1900	1000	565

• Combined SM bkg predictions are in good agreement with observed data events for all search regions

Result: Simplified Model (SMS) Interpretation

- SMS produced using Madgraph generator (ISR re-weighted data/sim. differences)
- Uncertainties: Re-weighting, JES, theoretical (PDFs) & luminosity

• 95% CL_s exclusion limit roughly up to 250 GeV for $m_{\tilde{t}}/m_{\tilde{b}}=m_{\tilde{\chi}^0}$

Conclusion

- Results for compressed SUSY searches performed by CMS using 19.7 fb⁻¹ data taken at 8 TeV have been presented
- Monojet (ISR) signatures achieve good sensitivity
- No excess of predicted SM bkg and data events observed
- Simplified model 95% CL_s exclusion limits derived excluding 250 GeV $\tilde{t} \& \tilde{b}$ masses up to $m_{\tilde{t}} = m_{\tilde{\chi}^0} \& m_{\tilde{b}} = m_{\tilde{\chi}^0}$

Additional Material